Loading…

Synergistic production of graphene microsheets by simultaneous anodic and cathodic electro-exfoliation of graphitic electrodes in aprotic ionic liquids

Electrochemically mediated exfoliation of graphite is a promising green and high throughput approach for production of graphene sheets (GNs). Previous research focused mostly on either anode or cathode exfoliation due to restrictions imposed by the investigated intercalating ions and insufficient co...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2015-04, Vol.84, p.449-459
Main Authors: Taheri Najafabadi, Amin, Gyenge, Előd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrochemically mediated exfoliation of graphite is a promising green and high throughput approach for production of graphene sheets (GNs). Previous research focused mostly on either anode or cathode exfoliation due to restrictions imposed by the investigated intercalating ions and insufficient consideration given to the design of the electrochemical cell. Consequently, in single graphite electrode studies, at the non-graphitic counter-electrode (e.g. Pt), unwanted electrode reactions such as gas evolution and electrolyte decomposition take place, leading to significant energy and chemical losses. Here, we report the simultaneous anodic and cathodic GN production in two types of electrochemical cells (undivided and divided) using aprotic electrolytes containing ionic liquids (ILs). We demonstrate a synergistic exfoliation effect when the iso-molded graphite anode and cathode are subjected to a constant cell potential, generating up to 3times higher exfoliation yields compared to single-electrode studies on each side (∼6-fold improvement in total). Thorough characterization of the products collected from both electrode compartments confirmed the production of ultrathin GNs (
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2014.12.041