Loading…

Assembly of a tile-based multilayered DNA nanostructure

The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-as...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2015-04, Vol.7 (15), p.6492-6497
Main Authors: Son, Junyoung, Lee, Junywe, Tandon, Anshula, Kim, Byeonghoon, Yoo, Sanghyun, Lee, Chang-Won, Park, Sung Ha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623
cites cdi_FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623
container_end_page 6497
container_issue 15
container_start_page 6492
container_title Nanoscale
container_volume 7
creator Son, Junyoung
Lee, Junywe
Tandon, Anshula
Kim, Byeonghoon
Yoo, Sanghyun
Lee, Chang-Won
Park, Sung Ha
description The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures.
doi_str_mv 10.1039/c4nr07332k
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685803692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685803692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoto5u_AEySxFG87hNZpalPrFUEF0PmeQGqvOoyWQx_97R1q5d3XPg48D9CDln9JpRUdwYaD1VQvDPAzLlFGgmhOKH-yxhQk5C-KBUFkKKYzLhs5wqlqspUfMQsKnqIe1cqtN-XWNW6YA2bWI9Nj2gH8vtap62uu1C76Ppo8dTcuR0HfBsdxPyfn_3tnjMli8PT4v5MjNiJvrMoaZoQQHLwRUSmOYIjCsnjZWF1aaqCmASweaco1TO2ZHURlt0kkouEnK53d347iti6MtmHQzWtW6xi6FkMh9_EbL4F0oBZmpUlZCrLWp8F4JHV278utF-KBktf5yWC1i9_jp9HuGL3W6sGrR79E-i-AZxXXCx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680445707</pqid></control><display><type>article</type><title>Assembly of a tile-based multilayered DNA nanostructure</title><source>Royal Society of Chemistry Journals</source><creator>Son, Junyoung ; Lee, Junywe ; Tandon, Anshula ; Kim, Byeonghoon ; Yoo, Sanghyun ; Lee, Chang-Won ; Park, Sung Ha</creator><creatorcontrib>Son, Junyoung ; Lee, Junywe ; Tandon, Anshula ; Kim, Byeonghoon ; Yoo, Sanghyun ; Lee, Chang-Won ; Park, Sung Ha</creatorcontrib><description>The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c4nr07332k</identifier><identifier>PMID: 25807187</identifier><language>eng</language><publisher>England</publisher><subject>Aluminum Silicates - chemistry ; Crossovers ; Deoxyribonucleic acid ; DNA - chemistry ; Horizontal ; Imaging, Three-Dimensional ; Materials Testing ; Microscopy, Atomic Force ; Multilayers ; Nanocomposites - chemistry ; Nanostructure ; Nanotechnology ; Nucleic Acid Conformation ; Oligonucleotides - chemistry ; Stacking ; Three dimensional</subject><ispartof>Nanoscale, 2015-04, Vol.7 (15), p.6492-6497</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623</citedby><cites>FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25807187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Son, Junyoung</creatorcontrib><creatorcontrib>Lee, Junywe</creatorcontrib><creatorcontrib>Tandon, Anshula</creatorcontrib><creatorcontrib>Kim, Byeonghoon</creatorcontrib><creatorcontrib>Yoo, Sanghyun</creatorcontrib><creatorcontrib>Lee, Chang-Won</creatorcontrib><creatorcontrib>Park, Sung Ha</creatorcontrib><title>Assembly of a tile-based multilayered DNA nanostructure</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures.</description><subject>Aluminum Silicates - chemistry</subject><subject>Crossovers</subject><subject>Deoxyribonucleic acid</subject><subject>DNA - chemistry</subject><subject>Horizontal</subject><subject>Imaging, Three-Dimensional</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force</subject><subject>Multilayers</subject><subject>Nanocomposites - chemistry</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nucleic Acid Conformation</subject><subject>Oligonucleotides - chemistry</subject><subject>Stacking</subject><subject>Three dimensional</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoto5u_AEySxFG87hNZpalPrFUEF0PmeQGqvOoyWQx_97R1q5d3XPg48D9CDln9JpRUdwYaD1VQvDPAzLlFGgmhOKH-yxhQk5C-KBUFkKKYzLhs5wqlqspUfMQsKnqIe1cqtN-XWNW6YA2bWI9Nj2gH8vtap62uu1C76Ppo8dTcuR0HfBsdxPyfn_3tnjMli8PT4v5MjNiJvrMoaZoQQHLwRUSmOYIjCsnjZWF1aaqCmASweaco1TO2ZHURlt0kkouEnK53d347iti6MtmHQzWtW6xi6FkMh9_EbL4F0oBZmpUlZCrLWp8F4JHV278utF-KBktf5yWC1i9_jp9HuGL3W6sGrR79E-i-AZxXXCx</recordid><startdate>20150421</startdate><enddate>20150421</enddate><creator>Son, Junyoung</creator><creator>Lee, Junywe</creator><creator>Tandon, Anshula</creator><creator>Kim, Byeonghoon</creator><creator>Yoo, Sanghyun</creator><creator>Lee, Chang-Won</creator><creator>Park, Sung Ha</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150421</creationdate><title>Assembly of a tile-based multilayered DNA nanostructure</title><author>Son, Junyoung ; Lee, Junywe ; Tandon, Anshula ; Kim, Byeonghoon ; Yoo, Sanghyun ; Lee, Chang-Won ; Park, Sung Ha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aluminum Silicates - chemistry</topic><topic>Crossovers</topic><topic>Deoxyribonucleic acid</topic><topic>DNA - chemistry</topic><topic>Horizontal</topic><topic>Imaging, Three-Dimensional</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force</topic><topic>Multilayers</topic><topic>Nanocomposites - chemistry</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nucleic Acid Conformation</topic><topic>Oligonucleotides - chemistry</topic><topic>Stacking</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Junyoung</creatorcontrib><creatorcontrib>Lee, Junywe</creatorcontrib><creatorcontrib>Tandon, Anshula</creatorcontrib><creatorcontrib>Kim, Byeonghoon</creatorcontrib><creatorcontrib>Yoo, Sanghyun</creatorcontrib><creatorcontrib>Lee, Chang-Won</creatorcontrib><creatorcontrib>Park, Sung Ha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Junyoung</au><au>Lee, Junywe</au><au>Tandon, Anshula</au><au>Kim, Byeonghoon</au><au>Yoo, Sanghyun</au><au>Lee, Chang-Won</au><au>Park, Sung Ha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembly of a tile-based multilayered DNA nanostructure</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2015-04-21</date><risdate>2015</risdate><volume>7</volume><issue>15</issue><spage>6492</spage><epage>6497</epage><pages>6492-6497</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures.</abstract><cop>England</cop><pmid>25807187</pmid><doi>10.1039/c4nr07332k</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2015-04, Vol.7 (15), p.6492-6497
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1685803692
source Royal Society of Chemistry Journals
subjects Aluminum Silicates - chemistry
Crossovers
Deoxyribonucleic acid
DNA - chemistry
Horizontal
Imaging, Three-Dimensional
Materials Testing
Microscopy, Atomic Force
Multilayers
Nanocomposites - chemistry
Nanostructure
Nanotechnology
Nucleic Acid Conformation
Oligonucleotides - chemistry
Stacking
Three dimensional
title Assembly of a tile-based multilayered DNA nanostructure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembly%20of%20a%20tile-based%20multilayered%20DNA%20nanostructure&rft.jtitle=Nanoscale&rft.au=Son,%20Junyoung&rft.date=2015-04-21&rft.volume=7&rft.issue=15&rft.spage=6492&rft.epage=6497&rft.pages=6492-6497&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c4nr07332k&rft_dat=%3Cproquest_cross%3E1685803692%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1680445707&rft_id=info:pmid/25807187&rfr_iscdi=true