Loading…
Assembly of a tile-based multilayered DNA nanostructure
The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-as...
Saved in:
Published in: | Nanoscale 2015-04, Vol.7 (15), p.6492-6497 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623 |
container_end_page | 6497 |
container_issue | 15 |
container_start_page | 6492 |
container_title | Nanoscale |
container_volume | 7 |
creator | Son, Junyoung Lee, Junywe Tandon, Anshula Kim, Byeonghoon Yoo, Sanghyun Lee, Chang-Won Park, Sung Ha |
description | The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures. |
doi_str_mv | 10.1039/c4nr07332k |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685803692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685803692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoto5u_AEySxFG87hNZpalPrFUEF0PmeQGqvOoyWQx_97R1q5d3XPg48D9CDln9JpRUdwYaD1VQvDPAzLlFGgmhOKH-yxhQk5C-KBUFkKKYzLhs5wqlqspUfMQsKnqIe1cqtN-XWNW6YA2bWI9Nj2gH8vtap62uu1C76Ppo8dTcuR0HfBsdxPyfn_3tnjMli8PT4v5MjNiJvrMoaZoQQHLwRUSmOYIjCsnjZWF1aaqCmASweaco1TO2ZHURlt0kkouEnK53d347iti6MtmHQzWtW6xi6FkMh9_EbL4F0oBZmpUlZCrLWp8F4JHV278utF-KBktf5yWC1i9_jp9HuGL3W6sGrR79E-i-AZxXXCx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680445707</pqid></control><display><type>article</type><title>Assembly of a tile-based multilayered DNA nanostructure</title><source>Royal Society of Chemistry Journals</source><creator>Son, Junyoung ; Lee, Junywe ; Tandon, Anshula ; Kim, Byeonghoon ; Yoo, Sanghyun ; Lee, Chang-Won ; Park, Sung Ha</creator><creatorcontrib>Son, Junyoung ; Lee, Junywe ; Tandon, Anshula ; Kim, Byeonghoon ; Yoo, Sanghyun ; Lee, Chang-Won ; Park, Sung Ha</creatorcontrib><description>The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c4nr07332k</identifier><identifier>PMID: 25807187</identifier><language>eng</language><publisher>England</publisher><subject>Aluminum Silicates - chemistry ; Crossovers ; Deoxyribonucleic acid ; DNA - chemistry ; Horizontal ; Imaging, Three-Dimensional ; Materials Testing ; Microscopy, Atomic Force ; Multilayers ; Nanocomposites - chemistry ; Nanostructure ; Nanotechnology ; Nucleic Acid Conformation ; Oligonucleotides - chemistry ; Stacking ; Three dimensional</subject><ispartof>Nanoscale, 2015-04, Vol.7 (15), p.6492-6497</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623</citedby><cites>FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25807187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Son, Junyoung</creatorcontrib><creatorcontrib>Lee, Junywe</creatorcontrib><creatorcontrib>Tandon, Anshula</creatorcontrib><creatorcontrib>Kim, Byeonghoon</creatorcontrib><creatorcontrib>Yoo, Sanghyun</creatorcontrib><creatorcontrib>Lee, Chang-Won</creatorcontrib><creatorcontrib>Park, Sung Ha</creatorcontrib><title>Assembly of a tile-based multilayered DNA nanostructure</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures.</description><subject>Aluminum Silicates - chemistry</subject><subject>Crossovers</subject><subject>Deoxyribonucleic acid</subject><subject>DNA - chemistry</subject><subject>Horizontal</subject><subject>Imaging, Three-Dimensional</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force</subject><subject>Multilayers</subject><subject>Nanocomposites - chemistry</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nucleic Acid Conformation</subject><subject>Oligonucleotides - chemistry</subject><subject>Stacking</subject><subject>Three dimensional</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoto5u_AEySxFG87hNZpalPrFUEF0PmeQGqvOoyWQx_97R1q5d3XPg48D9CDln9JpRUdwYaD1VQvDPAzLlFGgmhOKH-yxhQk5C-KBUFkKKYzLhs5wqlqspUfMQsKnqIe1cqtN-XWNW6YA2bWI9Nj2gH8vtap62uu1C76Ppo8dTcuR0HfBsdxPyfn_3tnjMli8PT4v5MjNiJvrMoaZoQQHLwRUSmOYIjCsnjZWF1aaqCmASweaco1TO2ZHURlt0kkouEnK53d347iti6MtmHQzWtW6xi6FkMh9_EbL4F0oBZmpUlZCrLWp8F4JHV278utF-KBktf5yWC1i9_jp9HuGL3W6sGrR79E-i-AZxXXCx</recordid><startdate>20150421</startdate><enddate>20150421</enddate><creator>Son, Junyoung</creator><creator>Lee, Junywe</creator><creator>Tandon, Anshula</creator><creator>Kim, Byeonghoon</creator><creator>Yoo, Sanghyun</creator><creator>Lee, Chang-Won</creator><creator>Park, Sung Ha</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150421</creationdate><title>Assembly of a tile-based multilayered DNA nanostructure</title><author>Son, Junyoung ; Lee, Junywe ; Tandon, Anshula ; Kim, Byeonghoon ; Yoo, Sanghyun ; Lee, Chang-Won ; Park, Sung Ha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aluminum Silicates - chemistry</topic><topic>Crossovers</topic><topic>Deoxyribonucleic acid</topic><topic>DNA - chemistry</topic><topic>Horizontal</topic><topic>Imaging, Three-Dimensional</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force</topic><topic>Multilayers</topic><topic>Nanocomposites - chemistry</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nucleic Acid Conformation</topic><topic>Oligonucleotides - chemistry</topic><topic>Stacking</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Junyoung</creatorcontrib><creatorcontrib>Lee, Junywe</creatorcontrib><creatorcontrib>Tandon, Anshula</creatorcontrib><creatorcontrib>Kim, Byeonghoon</creatorcontrib><creatorcontrib>Yoo, Sanghyun</creatorcontrib><creatorcontrib>Lee, Chang-Won</creatorcontrib><creatorcontrib>Park, Sung Ha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Junyoung</au><au>Lee, Junywe</au><au>Tandon, Anshula</au><au>Kim, Byeonghoon</au><au>Yoo, Sanghyun</au><au>Lee, Chang-Won</au><au>Park, Sung Ha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembly of a tile-based multilayered DNA nanostructure</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2015-04-21</date><risdate>2015</risdate><volume>7</volume><issue>15</issue><spage>6492</spage><epage>6497</epage><pages>6492-6497</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures.</abstract><cop>England</cop><pmid>25807187</pmid><doi>10.1039/c4nr07332k</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2015-04, Vol.7 (15), p.6492-6497 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685803692 |
source | Royal Society of Chemistry Journals |
subjects | Aluminum Silicates - chemistry Crossovers Deoxyribonucleic acid DNA - chemistry Horizontal Imaging, Three-Dimensional Materials Testing Microscopy, Atomic Force Multilayers Nanocomposites - chemistry Nanostructure Nanotechnology Nucleic Acid Conformation Oligonucleotides - chemistry Stacking Three dimensional |
title | Assembly of a tile-based multilayered DNA nanostructure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembly%20of%20a%20tile-based%20multilayered%20DNA%20nanostructure&rft.jtitle=Nanoscale&rft.au=Son,%20Junyoung&rft.date=2015-04-21&rft.volume=7&rft.issue=15&rft.spage=6492&rft.epage=6497&rft.pages=6492-6497&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c4nr07332k&rft_dat=%3Cproquest_cross%3E1685803692%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-fea0ed474184f9641a2e4127f6cd69dacbb9416e4d822e67ffd184acadef60623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1680445707&rft_id=info:pmid/25807187&rfr_iscdi=true |