Loading…

VLSI realization of learning vector quantization with hardware/software co-design for different applications

This paper reports a VLSI realization of learning vector quantization (LVQ) with high flexibility for different applications. It is based on a hardware/software (HW/SW) co-design concept for on-chip learning and recognition and designed as a SoC in 180 nm CMOS. The time consuming nearest Euclidean d...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 2015-04, Vol.54 (4S), p.4-1-04DE05-5
Main Authors: An, Fengwei, Akazawa, Toshinobu, Yamasaki, Shogo, Chen, Lei, Mattausch, Hans Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper reports a VLSI realization of learning vector quantization (LVQ) with high flexibility for different applications. It is based on a hardware/software (HW/SW) co-design concept for on-chip learning and recognition and designed as a SoC in 180 nm CMOS. The time consuming nearest Euclidean distance search in the LVQ algorithm s competition layer is efficiently implemented as a pipeline with parallel p-word input. Since neuron number in the competition layer, weight values, input and output number are scalable, the requirements of many different applications can be satisfied without hardware changes. Classification of a d-dimensional input vector is completed in clock cycles, where R is the pipeline depth, and n is the number of reference feature vectors (FVs). Adjustment of stored reference FVs during learning is done by the embedded 32-bit RISC CPU, because this operation is not time critical. The high flexibility is verified by the application of human detection with different numbers for the dimensionality of the FVs.
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.54.04DE05