Loading…
A highly stable and efficient magnetically recoverable and reusable Pd nanocatalyst in aqueous media heterogeneously catalysed Suzuki C-C cross-coupling reactions
Surface modification of Fe3O4 nanoparticles with triethoxyethylcyanide groups was used for the immobilization of palladium nanoparticles to produce Fe3O4/Ethyl‐CN/Pd. The catalyst was characterized using Fourier transform infrared, wavelength‐dispersive X‐ray, energy‐dispersive X‐ray and X‐ray photo...
Saved in:
Published in: | Applied organometallic chemistry 2015-05, Vol.29 (5), p.259-265 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Surface modification of Fe3O4 nanoparticles with triethoxyethylcyanide groups was used for the immobilization of palladium nanoparticles to produce Fe3O4/Ethyl‐CN/Pd. The catalyst was characterized using Fourier transform infrared, wavelength‐dispersive X‐ray, energy‐dispersive X‐ray and X‐ray photoelectron spectroscopies, field‐emission scanning electron and transmission electron microscopies, and X‐ray diffraction, vibrating sample magnetometry and inductively coupled plasma analyses. In this fabrication, cyano groups played an important role as a capping agent. The catalytic behaviour of Fe3O4/Ethyl‐CN/Pd nanoparticles was measured in the Suzuki cross‐coupling reaction of various aryl halides (ArI, ArBr, ArCl) with phenylboronic acid in aqueous phase at room temperature. Interestingly, the novel catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled seven times without any significant loss in activity. Copyright © 2015 John Wiley & Sons, Ltd.
Surface modification of Fe3O4 nanoparticles was used for the immobilization of palladium nanoparticles to produce Fe3O4/Ethyl‐CN/Pd as a magnetically reusable nanocatalyst in the Suzuki coupling reaction. |
---|---|
ISSN: | 0268-2605 1099-0739 |
DOI: | 10.1002/aoc.3282 |