Loading…
Determination of mercury(II) ions in seafood samples after extraction and preconcentration by a novel functionalized magnetic metal-organic framework nanocomposite
This work describes a novel functionalized magnetic metal–organic framework nanocomposite [(Fe3O4‐2,5‐dimercapto‐1,3,4‐thiadiazole)/metal–organic framework] and its application in the preconcentration of Hg(II) ions. The parameters affecting the preconcentration procedure were optimized by a Box–Beh...
Saved in:
Published in: | Journal of separation science 2015-04, Vol.38 (7), p.1179-1186 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work describes a novel functionalized magnetic metal–organic framework nanocomposite [(Fe3O4‐2,5‐dimercapto‐1,3,4‐thiadiazole)/metal–organic framework] and its application in the preconcentration of Hg(II) ions. The parameters affecting the preconcentration procedure were optimized by a Box–Behnken design through response surface methodology. Three variables (uptake time, magnetic nanosorbent amount, and pH value) were selected as the main factors affecting the sorption step, while four variables (type, volume, and concentration of the eluent; and elution time) were selected as main factors in the optimization study of the elution step. Following the sorption and elution of analytes, the ions were quantified by cold vapor atomic absorption spectrometry. Under the optimum conditions, the limit of detection was 0.01 ng/mL and all the relative standard deviations were less than 10%. The obtained sorption capacity (in mg/g) of this new sorbent was 124. Ultimately, this nanocomposite was successfully applied to the rapid extraction of trace quantities of Hg(II) ions in seafood samples and satisfactory results were obtained. |
---|---|
ISSN: | 1615-9306 1615-9314 |
DOI: | 10.1002/jssc.201401320 |