Loading…
Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform
Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not...
Saved in:
Published in: | Nature materials 2014-03, Vol.13 (3), p.279-285 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03 |
container_end_page | 285 |
container_issue | 3 |
container_start_page | 279 |
container_title | Nature materials |
container_volume | 13 |
creator | Birowosuto, Muhammad Danang Yokoo, Atsushi Zhang, Guoqiang Tateno, Kouta Kuramochi, Eiichi Taniyama, Hideaki Takiguchi, Masato Notomi, Masaya |
description | Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high-
Q
nanocavity can be created by placing a single III–V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III–V nanocavity devices in Si photonic circuits.
Confining light in subwavelength nanowires has posed a challenge to harnessing their potential for integrated photonic devices. Now, it is shown that a high-
Q
cavity can be achieved by placing a single nanowire into a groove in a photonic crystal resonator. |
doi_str_mv | 10.1038/nmat3873 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685810102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685810102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03</originalsourceid><addsrcrecordid>eNqF0clKxTAUBuAgijP4BBJwo4vqyVyXIk6giKjrkqaJt9Im16RVrk9v1OuAG1cJ-T_-cDgIbRHYJ8DKA9_rgZWKLaBVwpUsuJSwOL8TQukKWkvpEYASIeQyWqFcCCYFX0XmKjzrurN40j5MihvstQ_RpuD1EGLC0equfbUNrmc42b41wTejydEHfGkzxcFjjW9bPJ2EIfjWYBNnadAdnnZ6cCH2G2jJ6S7Zzfm5ju5PT-6Oz4vL67OL46PLwnDOh8IBd8qwBpxUijsrQanDhlGZYwPKHL6_8rKua2BWMMcplY2STjtlSa2BraPdz95pDE-jTUPVt8nYrtPehjFVRJaiJECA_k8FYcClApLpzh_6GMbo8yBZibKEkgr1U2hiSClaV01j2-s4qwhU7zuqvnaU6fa8cKx723zDr6VksPcJUo78g42_fvxb9gYy8pqX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558808257</pqid></control><display><type>article</type><title>Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform</title><source>Nature Journals</source><creator>Birowosuto, Muhammad Danang ; Yokoo, Atsushi ; Zhang, Guoqiang ; Tateno, Kouta ; Kuramochi, Eiichi ; Taniyama, Hideaki ; Takiguchi, Masato ; Notomi, Masaya</creator><creatorcontrib>Birowosuto, Muhammad Danang ; Yokoo, Atsushi ; Zhang, Guoqiang ; Tateno, Kouta ; Kuramochi, Eiichi ; Taniyama, Hideaki ; Takiguchi, Masato ; Notomi, Masaya</creatorcontrib><description>Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high-
Q
nanocavity can be created by placing a single III–V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III–V nanocavity devices in Si photonic circuits.
Confining light in subwavelength nanowires has posed a challenge to harnessing their potential for integrated photonic devices. Now, it is shown that a high-
Q
cavity can be achieved by placing a single nanowire into a groove in a photonic crystal resonator.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3873</identifier><identifier>PMID: 24553654</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019/1021 ; 639/301/1019/1022 ; 639/301/357/1016 ; 639/301/357/551 ; Biomaterials ; Circuits ; Condensed Matter Physics ; Confinement ; Corrugated waveguides ; Crystallography ; Devices ; Electrical engineering ; Emissions ; Materials Science ; Nanostructure ; Nanotechnology ; Nanowires ; Optical and Electronic Materials ; Optical properties ; Photonics ; Semiconductors ; Silicon</subject><ispartof>Nature materials, 2014-03, Vol.13 (3), p.279-285</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03</citedby><cites>FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24553654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birowosuto, Muhammad Danang</creatorcontrib><creatorcontrib>Yokoo, Atsushi</creatorcontrib><creatorcontrib>Zhang, Guoqiang</creatorcontrib><creatorcontrib>Tateno, Kouta</creatorcontrib><creatorcontrib>Kuramochi, Eiichi</creatorcontrib><creatorcontrib>Taniyama, Hideaki</creatorcontrib><creatorcontrib>Takiguchi, Masato</creatorcontrib><creatorcontrib>Notomi, Masaya</creatorcontrib><title>Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high-
Q
nanocavity can be created by placing a single III–V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III–V nanocavity devices in Si photonic circuits.
Confining light in subwavelength nanowires has posed a challenge to harnessing their potential for integrated photonic devices. Now, it is shown that a high-
Q
cavity can be achieved by placing a single nanowire into a groove in a photonic crystal resonator.</description><subject>639/301/1019/1021</subject><subject>639/301/1019/1022</subject><subject>639/301/357/1016</subject><subject>639/301/357/551</subject><subject>Biomaterials</subject><subject>Circuits</subject><subject>Condensed Matter Physics</subject><subject>Confinement</subject><subject>Corrugated waveguides</subject><subject>Crystallography</subject><subject>Devices</subject><subject>Electrical engineering</subject><subject>Emissions</subject><subject>Materials Science</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photonics</subject><subject>Semiconductors</subject><subject>Silicon</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0clKxTAUBuAgijP4BBJwo4vqyVyXIk6giKjrkqaJt9Im16RVrk9v1OuAG1cJ-T_-cDgIbRHYJ8DKA9_rgZWKLaBVwpUsuJSwOL8TQukKWkvpEYASIeQyWqFcCCYFX0XmKjzrurN40j5MihvstQ_RpuD1EGLC0equfbUNrmc42b41wTejydEHfGkzxcFjjW9bPJ2EIfjWYBNnadAdnnZ6cCH2G2jJ6S7Zzfm5ju5PT-6Oz4vL67OL46PLwnDOh8IBd8qwBpxUijsrQanDhlGZYwPKHL6_8rKua2BWMMcplY2STjtlSa2BraPdz95pDE-jTUPVt8nYrtPehjFVRJaiJECA_k8FYcClApLpzh_6GMbo8yBZibKEkgr1U2hiSClaV01j2-s4qwhU7zuqvnaU6fa8cKx723zDr6VksPcJUo78g42_fvxb9gYy8pqX</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Birowosuto, Muhammad Danang</creator><creator>Yokoo, Atsushi</creator><creator>Zhang, Guoqiang</creator><creator>Tateno, Kouta</creator><creator>Kuramochi, Eiichi</creator><creator>Taniyama, Hideaki</creator><creator>Takiguchi, Masato</creator><creator>Notomi, Masaya</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform</title><author>Birowosuto, Muhammad Danang ; Yokoo, Atsushi ; Zhang, Guoqiang ; Tateno, Kouta ; Kuramochi, Eiichi ; Taniyama, Hideaki ; Takiguchi, Masato ; Notomi, Masaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/1019/1021</topic><topic>639/301/1019/1022</topic><topic>639/301/357/1016</topic><topic>639/301/357/551</topic><topic>Biomaterials</topic><topic>Circuits</topic><topic>Condensed Matter Physics</topic><topic>Confinement</topic><topic>Corrugated waveguides</topic><topic>Crystallography</topic><topic>Devices</topic><topic>Electrical engineering</topic><topic>Emissions</topic><topic>Materials Science</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photonics</topic><topic>Semiconductors</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birowosuto, Muhammad Danang</creatorcontrib><creatorcontrib>Yokoo, Atsushi</creatorcontrib><creatorcontrib>Zhang, Guoqiang</creatorcontrib><creatorcontrib>Tateno, Kouta</creatorcontrib><creatorcontrib>Kuramochi, Eiichi</creatorcontrib><creatorcontrib>Taniyama, Hideaki</creatorcontrib><creatorcontrib>Takiguchi, Masato</creatorcontrib><creatorcontrib>Notomi, Masaya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birowosuto, Muhammad Danang</au><au>Yokoo, Atsushi</au><au>Zhang, Guoqiang</au><au>Tateno, Kouta</au><au>Kuramochi, Eiichi</au><au>Taniyama, Hideaki</au><au>Takiguchi, Masato</au><au>Notomi, Masaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>13</volume><issue>3</issue><spage>279</spage><epage>285</epage><pages>279-285</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high-
Q
nanocavity can be created by placing a single III–V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III–V nanocavity devices in Si photonic circuits.
Confining light in subwavelength nanowires has posed a challenge to harnessing their potential for integrated photonic devices. Now, it is shown that a high-
Q
cavity can be achieved by placing a single nanowire into a groove in a photonic crystal resonator.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24553654</pmid><doi>10.1038/nmat3873</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2014-03, Vol.13 (3), p.279-285 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685810102 |
source | Nature Journals |
subjects | 639/301/1019/1021 639/301/1019/1022 639/301/357/1016 639/301/357/551 Biomaterials Circuits Condensed Matter Physics Confinement Corrugated waveguides Crystallography Devices Electrical engineering Emissions Materials Science Nanostructure Nanotechnology Nanowires Optical and Electronic Materials Optical properties Photonics Semiconductors Silicon |
title | Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Movable%20high-Q%20nanoresonators%20realized%20by%20semiconductor%20nanowires%20on%20a%20Si%20photonic%20crystal%20platform&rft.jtitle=Nature%20materials&rft.au=Birowosuto,%20Muhammad%20Danang&rft.date=2014-03-01&rft.volume=13&rft.issue=3&rft.spage=279&rft.epage=285&rft.pages=279-285&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3873&rft_dat=%3Cproquest_cross%3E1685810102%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1558808257&rft_id=info:pmid/24553654&rfr_iscdi=true |