Loading…

Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform

Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2014-03, Vol.13 (3), p.279-285
Main Authors: Birowosuto, Muhammad Danang, Yokoo, Atsushi, Zhang, Guoqiang, Tateno, Kouta, Kuramochi, Eiichi, Taniyama, Hideaki, Takiguchi, Masato, Notomi, Masaya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03
cites cdi_FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03
container_end_page 285
container_issue 3
container_start_page 279
container_title Nature materials
container_volume 13
creator Birowosuto, Muhammad Danang
Yokoo, Atsushi
Zhang, Guoqiang
Tateno, Kouta
Kuramochi, Eiichi
Taniyama, Hideaki
Takiguchi, Masato
Notomi, Masaya
description Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high- Q nanocavity can be created by placing a single III–V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III–V nanocavity devices in Si photonic circuits. Confining light in subwavelength nanowires has posed a challenge to harnessing their potential for integrated photonic devices. Now, it is shown that a high- Q cavity can be achieved by placing a single nanowire into a groove in a photonic crystal resonator.
doi_str_mv 10.1038/nmat3873
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685810102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685810102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03</originalsourceid><addsrcrecordid>eNqF0clKxTAUBuAgijP4BBJwo4vqyVyXIk6giKjrkqaJt9Im16RVrk9v1OuAG1cJ-T_-cDgIbRHYJ8DKA9_rgZWKLaBVwpUsuJSwOL8TQukKWkvpEYASIeQyWqFcCCYFX0XmKjzrurN40j5MihvstQ_RpuD1EGLC0equfbUNrmc42b41wTejydEHfGkzxcFjjW9bPJ2EIfjWYBNnadAdnnZ6cCH2G2jJ6S7Zzfm5ju5PT-6Oz4vL67OL46PLwnDOh8IBd8qwBpxUijsrQanDhlGZYwPKHL6_8rKua2BWMMcplY2STjtlSa2BraPdz95pDE-jTUPVt8nYrtPehjFVRJaiJECA_k8FYcClApLpzh_6GMbo8yBZibKEkgr1U2hiSClaV01j2-s4qwhU7zuqvnaU6fa8cKx723zDr6VksPcJUo78g42_fvxb9gYy8pqX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558808257</pqid></control><display><type>article</type><title>Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform</title><source>Nature Journals</source><creator>Birowosuto, Muhammad Danang ; Yokoo, Atsushi ; Zhang, Guoqiang ; Tateno, Kouta ; Kuramochi, Eiichi ; Taniyama, Hideaki ; Takiguchi, Masato ; Notomi, Masaya</creator><creatorcontrib>Birowosuto, Muhammad Danang ; Yokoo, Atsushi ; Zhang, Guoqiang ; Tateno, Kouta ; Kuramochi, Eiichi ; Taniyama, Hideaki ; Takiguchi, Masato ; Notomi, Masaya</creatorcontrib><description>Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high- Q nanocavity can be created by placing a single III–V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III–V nanocavity devices in Si photonic circuits. Confining light in subwavelength nanowires has posed a challenge to harnessing their potential for integrated photonic devices. Now, it is shown that a high- Q cavity can be achieved by placing a single nanowire into a groove in a photonic crystal resonator.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3873</identifier><identifier>PMID: 24553654</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019/1021 ; 639/301/1019/1022 ; 639/301/357/1016 ; 639/301/357/551 ; Biomaterials ; Circuits ; Condensed Matter Physics ; Confinement ; Corrugated waveguides ; Crystallography ; Devices ; Electrical engineering ; Emissions ; Materials Science ; Nanostructure ; Nanotechnology ; Nanowires ; Optical and Electronic Materials ; Optical properties ; Photonics ; Semiconductors ; Silicon</subject><ispartof>Nature materials, 2014-03, Vol.13 (3), p.279-285</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03</citedby><cites>FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24553654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birowosuto, Muhammad Danang</creatorcontrib><creatorcontrib>Yokoo, Atsushi</creatorcontrib><creatorcontrib>Zhang, Guoqiang</creatorcontrib><creatorcontrib>Tateno, Kouta</creatorcontrib><creatorcontrib>Kuramochi, Eiichi</creatorcontrib><creatorcontrib>Taniyama, Hideaki</creatorcontrib><creatorcontrib>Takiguchi, Masato</creatorcontrib><creatorcontrib>Notomi, Masaya</creatorcontrib><title>Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high- Q nanocavity can be created by placing a single III–V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III–V nanocavity devices in Si photonic circuits. Confining light in subwavelength nanowires has posed a challenge to harnessing their potential for integrated photonic devices. Now, it is shown that a high- Q cavity can be achieved by placing a single nanowire into a groove in a photonic crystal resonator.</description><subject>639/301/1019/1021</subject><subject>639/301/1019/1022</subject><subject>639/301/357/1016</subject><subject>639/301/357/551</subject><subject>Biomaterials</subject><subject>Circuits</subject><subject>Condensed Matter Physics</subject><subject>Confinement</subject><subject>Corrugated waveguides</subject><subject>Crystallography</subject><subject>Devices</subject><subject>Electrical engineering</subject><subject>Emissions</subject><subject>Materials Science</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photonics</subject><subject>Semiconductors</subject><subject>Silicon</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0clKxTAUBuAgijP4BBJwo4vqyVyXIk6giKjrkqaJt9Im16RVrk9v1OuAG1cJ-T_-cDgIbRHYJ8DKA9_rgZWKLaBVwpUsuJSwOL8TQukKWkvpEYASIeQyWqFcCCYFX0XmKjzrurN40j5MihvstQ_RpuD1EGLC0equfbUNrmc42b41wTejydEHfGkzxcFjjW9bPJ2EIfjWYBNnadAdnnZ6cCH2G2jJ6S7Zzfm5ju5PT-6Oz4vL67OL46PLwnDOh8IBd8qwBpxUijsrQanDhlGZYwPKHL6_8rKua2BWMMcplY2STjtlSa2BraPdz95pDE-jTUPVt8nYrtPehjFVRJaiJECA_k8FYcClApLpzh_6GMbo8yBZibKEkgr1U2hiSClaV01j2-s4qwhU7zuqvnaU6fa8cKx723zDr6VksPcJUo78g42_fvxb9gYy8pqX</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Birowosuto, Muhammad Danang</creator><creator>Yokoo, Atsushi</creator><creator>Zhang, Guoqiang</creator><creator>Tateno, Kouta</creator><creator>Kuramochi, Eiichi</creator><creator>Taniyama, Hideaki</creator><creator>Takiguchi, Masato</creator><creator>Notomi, Masaya</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform</title><author>Birowosuto, Muhammad Danang ; Yokoo, Atsushi ; Zhang, Guoqiang ; Tateno, Kouta ; Kuramochi, Eiichi ; Taniyama, Hideaki ; Takiguchi, Masato ; Notomi, Masaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/1019/1021</topic><topic>639/301/1019/1022</topic><topic>639/301/357/1016</topic><topic>639/301/357/551</topic><topic>Biomaterials</topic><topic>Circuits</topic><topic>Condensed Matter Physics</topic><topic>Confinement</topic><topic>Corrugated waveguides</topic><topic>Crystallography</topic><topic>Devices</topic><topic>Electrical engineering</topic><topic>Emissions</topic><topic>Materials Science</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photonics</topic><topic>Semiconductors</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birowosuto, Muhammad Danang</creatorcontrib><creatorcontrib>Yokoo, Atsushi</creatorcontrib><creatorcontrib>Zhang, Guoqiang</creatorcontrib><creatorcontrib>Tateno, Kouta</creatorcontrib><creatorcontrib>Kuramochi, Eiichi</creatorcontrib><creatorcontrib>Taniyama, Hideaki</creatorcontrib><creatorcontrib>Takiguchi, Masato</creatorcontrib><creatorcontrib>Notomi, Masaya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birowosuto, Muhammad Danang</au><au>Yokoo, Atsushi</au><au>Zhang, Guoqiang</au><au>Tateno, Kouta</au><au>Kuramochi, Eiichi</au><au>Taniyama, Hideaki</au><au>Takiguchi, Masato</au><au>Notomi, Masaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>13</volume><issue>3</issue><spage>279</spage><epage>285</epage><pages>279-285</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high- Q nanocavity can be created by placing a single III–V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III–V nanocavity devices in Si photonic circuits. Confining light in subwavelength nanowires has posed a challenge to harnessing their potential for integrated photonic devices. Now, it is shown that a high- Q cavity can be achieved by placing a single nanowire into a groove in a photonic crystal resonator.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24553654</pmid><doi>10.1038/nmat3873</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2014-03, Vol.13 (3), p.279-285
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1685810102
source Nature Journals
subjects 639/301/1019/1021
639/301/1019/1022
639/301/357/1016
639/301/357/551
Biomaterials
Circuits
Condensed Matter Physics
Confinement
Corrugated waveguides
Crystallography
Devices
Electrical engineering
Emissions
Materials Science
Nanostructure
Nanotechnology
Nanowires
Optical and Electronic Materials
Optical properties
Photonics
Semiconductors
Silicon
title Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Movable%20high-Q%20nanoresonators%20realized%20by%20semiconductor%20nanowires%20on%20a%20Si%20photonic%20crystal%20platform&rft.jtitle=Nature%20materials&rft.au=Birowosuto,%20Muhammad%20Danang&rft.date=2014-03-01&rft.volume=13&rft.issue=3&rft.spage=279&rft.epage=285&rft.pages=279-285&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3873&rft_dat=%3Cproquest_cross%3E1685810102%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-f04f7c3d0f6774fe60779d326c44c07c9774f48bbb03e53f4226d76faf7e1ba03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1558808257&rft_id=info:pmid/24553654&rfr_iscdi=true