Loading…
Phonon transport across a vacuum gap
Phonon transport across a silicon/vacuum-gap/silicon structure is modeled using lattice dynamics calculations and Landauer theory. The phonons transmit thermal energy across the vacuum gap via atomic interactions between the leads. Because the incident phonons do not encounter a classically impenetr...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-01, Vol.85 (2), p.024118-024118, Article 024118 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phonon transport across a silicon/vacuum-gap/silicon structure is modeled using lattice dynamics calculations and Landauer theory. The phonons transmit thermal energy across the vacuum gap via atomic interactions between the leads. Because the incident phonons do not encounter a classically impenetrable potential barrier, this mechanism is not a tunneling phenomenon. While some incident phonons transmit across the vacuum gap and remain in their original mode, many are annihilated and excite different modes. We show that the heat flux due to phonon transport can be 4 orders of magnitude larger than that due to photon transport predicted from near-field radiation theory. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.85.024118 |