Loading…

Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs

Biomass densification processes increase fuel energy density for more efficient transport. This study presents new data to show that blending different types of biomass improves the properties of densified biomass briquettes. The specific objectives were to investigate the effects of sample batch (b...

Full description

Saved in:
Bibliographic Details
Published in:Fuel processing technology 2015-05, Vol.133, p.137-145
Main Authors: Muazu, Rukayya I., Stegemann, Julia A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biomass densification processes increase fuel energy density for more efficient transport. This study presents new data to show that blending different types of biomass improves the properties of densified biomass briquettes. The specific objectives were to investigate the effects of sample batch (biomass source), material ratio (rice husks to corn cobs), addition of binder (starch and water mixture) and compaction pressure, on briquette properties, using a factorial experiment. Briquettes had a unit density of up to 1.9 times the loose biomass bulk density, and were stronger than briquettes from the individual materials. Considering average values from two biomass sources, an unconfined compressive strength of 176kPa was achieved at a compaction pressure of 31MPa for a 3:7 blend of rice husks to corn cobs with 10% binder. These briquettes were durable, with only 4% mass loss during abrasion and 10% mass loss during shattering tests. They absorbed 36% less water than loose corn cobs. Statistical analysis of the results showed that starch and water addition was required for adequate briquette strength, but significantly reduced green and relaxed densities. The source of the biomass had a significant effect on densification, which emphasises the need to understand factors underlying biomass variability. •Briquetting of agricultural wastes can be used to increase fuel energy density.•Durable briquettes were made with blends of rice husks and corn cobs.•Starch binder addition was needed for strength, but decreased briquette density.•Further study of the effect of biomass variability on densification is needed.
ISSN:0378-3820
1873-7188
DOI:10.1016/j.fuproc.2015.01.022