Loading…

Effect of therapeutic femtosecond laser pulse energy, repetition rate, and numerical aperture on laser-induced second and third harmonic generation in corneal tissue

Clinical therapy incorporating femtosecond laser (FSL) devices is a quickly growing field in modern biomedical technology due to their precision and ability to generate therapeutic effects with substantially less laser pulse energy. FSLs have the potential to produce nonlinear optical effects such a...

Full description

Saved in:
Bibliographic Details
Published in:Lasers in medical science 2015-05, Vol.30 (4), p.1341-1346
Main Authors: Calhoun, William R., Ilev, Ilko K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Clinical therapy incorporating femtosecond laser (FSL) devices is a quickly growing field in modern biomedical technology due to their precision and ability to generate therapeutic effects with substantially less laser pulse energy. FSLs have the potential to produce nonlinear optical effects such as harmonic generation (HG), especially in tissues with significant nonlinear susceptibilities such as the cornea. HG in corneal tissue has been demonstrated in nonlinear harmonic microscopy using low-power FSLs. Furthermore, the wavelength ranges of harmonic spectral emissions generated in corneal tissues are known to be phototoxic above certain intensities. We have investigated how the critical FSL parameters pulse energy, pulse repetition rate, and numerical aperture influence both second (SHG) and third harmonic generation (THG) in corneal tissue. Experimental results demonstrated corresponding increases in HG intensity with increasing repetition rate and numerical aperture. HG duration decreased with increasing repetition rate and pulse energy. The data also demonstrated a significant difference in HG between FSL parameters representing the two most common classes of FSL therapeutic devices.
ISSN:0268-8921
1435-604X
DOI:10.1007/s10103-015-1726-5