Loading…
Effect of FosPeg® mediated photoactivation on P-gp/ABCB1 protein expression in human nasopharyngeal carcinoma cells
Multidrug resistance (MDR) refers to the ability of cancer cells to develop cross resistance to a range of anticancer drugs which are structurally and functionally unrelated. P-glycoprotein (P-gp) is the best studied MDR phenotype in photodynamic therapy (PDT) treated cells. Our pervious study demon...
Saved in:
Published in: | Journal of photochemistry and photobiology. B, Biology Biology, 2015-07, Vol.148, p.82-87 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multidrug resistance (MDR) refers to the ability of cancer cells to develop cross resistance to a range of anticancer drugs which are structurally and functionally unrelated. P-glycoprotein (P-gp) is the best studied MDR phenotype in photodynamic therapy (PDT) treated cells. Our pervious study demonstrated that FosPeg® mediated PDT is effective to NPC cell line models. In this in vitro study, the expression of MDR1 gene and its product P-gp in undifferentiated, poorly differentiated and well differentiated human nasopharyngeal carcinoma (NPC) cells were investigated. The influence of P-gp efflux activities on photosensitizer FosPeg® was also examined. Regardless of the differentiation status, PDT tested NPC cell lines all expressed P-gp protein. Results indicated that FosPeg® photoactivation could heighten the expression of MDR1 gene and P-gp transporter protein in a dose dependent manner. Up to 2-fold increase of P-gp protein expression were seen in NPC cells after FosPeg® mediated PDT. Interestingly, our finding demonstrated that FosPeg® mediated PDT efficiency is independent to the MDR1 gene and P-gp protein expression in NPC cells. FosPeg® itself is not the substrate of P-gp transporter protein and no efflux of FosPeg® were observed in NPC cells. Therefore, the PDT efficiency would not be affected even though FosPeg® mediated PDT could induce MDR1 gene and P-gp protein expression in NPC cells. FosPeg® mediated PDT could be a potential therapeutic approach for MDR cancer patients. |
---|---|
ISSN: | 1011-1344 1873-2682 |
DOI: | 10.1016/j.jphotobiol.2015.03.019 |