Loading…

High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites

Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO3) and organic constituents, is a textbook example because of its strength and toughness, which are related t...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular rapid communications. 2015-06, Vol.36 (11), p.1129-1137
Main Authors: Liaqat, Faroha, Tahir, Muhammad Nawaz, Schechtel, Eugen, Kappl, Michael, Auernhammer, Günter K., Char, Kookheon, Zentel, Rudolf, Butt, Hans-Jürgen, Tremel, Wolfgang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1137
container_issue 11
container_start_page 1129
container_title Macromolecular rapid communications.
container_volume 36
creator Liaqat, Faroha
Tahir, Muhammad Nawaz
Schechtel, Eugen
Kappl, Michael
Auernhammer, Günter K.
Char, Kookheon
Zentel, Rudolf
Butt, Hans-Jürgen
Tremel, Wolfgang
description Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO3) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well‐defined organic–inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO2 nanoparticles and a 3‐hydroxy‐tyramine (DOPA) substituted polymer (DOPA‐polymer), strongly cemented together by chelation through infiltration of the polymer into the TiO2 mesocrystal. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation. A key feature leading to the high strength is the strong adhesion of the DOPA‐polymer to the TiO2 nanoparticles. A route to a synthetic nanocomposite is demonstrated by assembling hard and tough multilayered nanocomposites from alternating layers of TiO2 nanoparticles and a mussel‐mimetic 3‐hydroxy‐tyramine (DOPA)‐polymer. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation.
doi_str_mv 10.1002/marc.201400706
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686067336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3701624461</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3646-da78f521cd314e39b3214b66d40172324a288e67a1c72a1f1d0fa75c5787b4033</originalsourceid><addsrcrecordid>eNpdkM1PwjAYhxujEUWvHg2JFy-Dt9-bN0QFE740GI9Nt3U43NhsIcp_bwnIwVPb9Pm9-b0PQlcY2hiAdEptkzYBzAAkiCN0hjnBAY2IPPZ3ICTAlIoGOnduAQAhA3KKGoRHJIokO0N3g3z-EUyNzSpb6mViWrN8QlpjvaxqbVd5UpjOw2TaDaZVsSmNbfWqsq5cvjLuAp1kunDmcn820dvT46w3CIaT_nOvOwzmVDARpFqGmS-VpBQzQ6OYEsxiIVIGWBJKmCZhaITUOJFE4wynkGnJEy5DGTOgtIlud3NrW32tjVupMneJKQq9NNXaKSxCAUL6NT168w9dVGu79O22FIs4Z5h76npPrePSpKq2ude4UX9WPBDtgO-8MJvDPwa1da62ztXBuRp1X3uHl88Gu2zuVubnkNX2U_mOkqv3cV_dv4w4CAZqRH8BDymAbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684955415</pqid></control><display><type>article</type><title>High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Liaqat, Faroha ; Tahir, Muhammad Nawaz ; Schechtel, Eugen ; Kappl, Michael ; Auernhammer, Günter K. ; Char, Kookheon ; Zentel, Rudolf ; Butt, Hans-Jürgen ; Tremel, Wolfgang</creator><creatorcontrib>Liaqat, Faroha ; Tahir, Muhammad Nawaz ; Schechtel, Eugen ; Kappl, Michael ; Auernhammer, Günter K. ; Char, Kookheon ; Zentel, Rudolf ; Butt, Hans-Jürgen ; Tremel, Wolfgang</creatorcontrib><description>Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO3) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well‐defined organic–inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO2 nanoparticles and a 3‐hydroxy‐tyramine (DOPA) substituted polymer (DOPA‐polymer), strongly cemented together by chelation through infiltration of the polymer into the TiO2 mesocrystal. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation. A key feature leading to the high strength is the strong adhesion of the DOPA‐polymer to the TiO2 nanoparticles. A route to a synthetic nanocomposite is demonstrated by assembling hard and tough multilayered nanocomposites from alternating layers of TiO2 nanoparticles and a mussel‐mimetic 3‐hydroxy‐tyramine (DOPA)‐polymer. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201400706</identifier><identifier>PMID: 25929974</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Calcium Carbonate - chemistry ; catechol polymers ; Dihydroxyphenylalanine - chemistry ; Elastic Modulus ; fracture toughness ; inorganic-organic nanocomposites ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; metal-coordination bonding ; Microscopy, Atomic Force ; Polymers - chemical synthesis ; Polymers - chemistry ; Spectrophotometry, Ultraviolet ; Spectroscopy, Fourier Transform Infrared ; TiO2 nanoparticles ; Titanium - chemistry</subject><ispartof>Macromolecular rapid communications., 2015-06, Vol.36 (11), p.1129-1137</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25929974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liaqat, Faroha</creatorcontrib><creatorcontrib>Tahir, Muhammad Nawaz</creatorcontrib><creatorcontrib>Schechtel, Eugen</creatorcontrib><creatorcontrib>Kappl, Michael</creatorcontrib><creatorcontrib>Auernhammer, Günter K.</creatorcontrib><creatorcontrib>Char, Kookheon</creatorcontrib><creatorcontrib>Zentel, Rudolf</creatorcontrib><creatorcontrib>Butt, Hans-Jürgen</creatorcontrib><creatorcontrib>Tremel, Wolfgang</creatorcontrib><title>High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites</title><title>Macromolecular rapid communications.</title><addtitle>Macromol. Rapid Commun</addtitle><description>Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO3) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well‐defined organic–inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO2 nanoparticles and a 3‐hydroxy‐tyramine (DOPA) substituted polymer (DOPA‐polymer), strongly cemented together by chelation through infiltration of the polymer into the TiO2 mesocrystal. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation. A key feature leading to the high strength is the strong adhesion of the DOPA‐polymer to the TiO2 nanoparticles. A route to a synthetic nanocomposite is demonstrated by assembling hard and tough multilayered nanocomposites from alternating layers of TiO2 nanoparticles and a mussel‐mimetic 3‐hydroxy‐tyramine (DOPA)‐polymer. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation.</description><subject>Calcium Carbonate - chemistry</subject><subject>catechol polymers</subject><subject>Dihydroxyphenylalanine - chemistry</subject><subject>Elastic Modulus</subject><subject>fracture toughness</subject><subject>inorganic-organic nanocomposites</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>metal-coordination bonding</subject><subject>Microscopy, Atomic Force</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>TiO2 nanoparticles</subject><subject>Titanium - chemistry</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkM1PwjAYhxujEUWvHg2JFy-Dt9-bN0QFE740GI9Nt3U43NhsIcp_bwnIwVPb9Pm9-b0PQlcY2hiAdEptkzYBzAAkiCN0hjnBAY2IPPZ3ICTAlIoGOnduAQAhA3KKGoRHJIokO0N3g3z-EUyNzSpb6mViWrN8QlpjvaxqbVd5UpjOw2TaDaZVsSmNbfWqsq5cvjLuAp1kunDmcn820dvT46w3CIaT_nOvOwzmVDARpFqGmS-VpBQzQ6OYEsxiIVIGWBJKmCZhaITUOJFE4wynkGnJEy5DGTOgtIlud3NrW32tjVupMneJKQq9NNXaKSxCAUL6NT168w9dVGu79O22FIs4Z5h76npPrePSpKq2ude4UX9WPBDtgO-8MJvDPwa1da62ztXBuRp1X3uHl88Gu2zuVubnkNX2U_mOkqv3cV_dv4w4CAZqRH8BDymAbQ</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Liaqat, Faroha</creator><creator>Tahir, Muhammad Nawaz</creator><creator>Schechtel, Eugen</creator><creator>Kappl, Michael</creator><creator>Auernhammer, Günter K.</creator><creator>Char, Kookheon</creator><creator>Zentel, Rudolf</creator><creator>Butt, Hans-Jürgen</creator><creator>Tremel, Wolfgang</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201506</creationdate><title>High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites</title><author>Liaqat, Faroha ; Tahir, Muhammad Nawaz ; Schechtel, Eugen ; Kappl, Michael ; Auernhammer, Günter K. ; Char, Kookheon ; Zentel, Rudolf ; Butt, Hans-Jürgen ; Tremel, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3646-da78f521cd314e39b3214b66d40172324a288e67a1c72a1f1d0fa75c5787b4033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calcium Carbonate - chemistry</topic><topic>catechol polymers</topic><topic>Dihydroxyphenylalanine - chemistry</topic><topic>Elastic Modulus</topic><topic>fracture toughness</topic><topic>inorganic-organic nanocomposites</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>metal-coordination bonding</topic><topic>Microscopy, Atomic Force</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>TiO2 nanoparticles</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liaqat, Faroha</creatorcontrib><creatorcontrib>Tahir, Muhammad Nawaz</creatorcontrib><creatorcontrib>Schechtel, Eugen</creatorcontrib><creatorcontrib>Kappl, Michael</creatorcontrib><creatorcontrib>Auernhammer, Günter K.</creatorcontrib><creatorcontrib>Char, Kookheon</creatorcontrib><creatorcontrib>Zentel, Rudolf</creatorcontrib><creatorcontrib>Butt, Hans-Jürgen</creatorcontrib><creatorcontrib>Tremel, Wolfgang</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liaqat, Faroha</au><au>Tahir, Muhammad Nawaz</au><au>Schechtel, Eugen</au><au>Kappl, Michael</au><au>Auernhammer, Günter K.</au><au>Char, Kookheon</au><au>Zentel, Rudolf</au><au>Butt, Hans-Jürgen</au><au>Tremel, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol. Rapid Commun</addtitle><date>2015-06</date><risdate>2015</risdate><volume>36</volume><issue>11</issue><spage>1129</spage><epage>1137</epage><pages>1129-1137</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO3) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well‐defined organic–inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO2 nanoparticles and a 3‐hydroxy‐tyramine (DOPA) substituted polymer (DOPA‐polymer), strongly cemented together by chelation through infiltration of the polymer into the TiO2 mesocrystal. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation. A key feature leading to the high strength is the strong adhesion of the DOPA‐polymer to the TiO2 nanoparticles. A route to a synthetic nanocomposite is demonstrated by assembling hard and tough multilayered nanocomposites from alternating layers of TiO2 nanoparticles and a mussel‐mimetic 3‐hydroxy‐tyramine (DOPA)‐polymer. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25929974</pmid><doi>10.1002/marc.201400706</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2015-06, Vol.36 (11), p.1129-1137
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_1686067336
source Wiley-Blackwell Read & Publish Collection
subjects Calcium Carbonate - chemistry
catechol polymers
Dihydroxyphenylalanine - chemistry
Elastic Modulus
fracture toughness
inorganic-organic nanocomposites
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
metal-coordination bonding
Microscopy, Atomic Force
Polymers - chemical synthesis
Polymers - chemistry
Spectrophotometry, Ultraviolet
Spectroscopy, Fourier Transform Infrared
TiO2 nanoparticles
Titanium - chemistry
title High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20TiO2%20Nanoparticle/DOPA-Polymer%20Composites&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Liaqat,%20Faroha&rft.date=2015-06&rft.volume=36&rft.issue=11&rft.spage=1129&rft.epage=1137&rft.pages=1129-1137&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201400706&rft_dat=%3Cproquest_pubme%3E3701624461%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g3646-da78f521cd314e39b3214b66d40172324a288e67a1c72a1f1d0fa75c5787b4033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1684955415&rft_id=info:pmid/25929974&rfr_iscdi=true