Loading…
Reducing patient radiation exposure during paediatric SVT ablations: use of CARTO® 3 in concert with “ALARA” principles profoundly lowers total dose
Background: “ALARA – As Low As Reasonably Achievable” protocols reduce patient radiation dose. Addition of electroanatomical mapping may further reduce dose. Methods: From 6/11 to 4/12, a novel ALARA protocol was utilised for all patients undergoing supraventricular tachycardia ablation, including l...
Saved in:
Published in: | Cardiology in the young 2015-06, Vol.25 (5), p.963-968 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: “ALARA – As Low As Reasonably Achievable” protocols reduce patient radiation dose. Addition of electroanatomical mapping may further reduce dose. Methods: From 6/11 to 4/12, a novel ALARA protocol was utilised for all patients undergoing supraventricular tachycardia ablation, including low frame rates (2–3 frames/second), low fluoro dose/frame (6–18 nGy/frame), and other techniques to reduce fluoroscopy (ALARA). From 6/12 to 3/13, use of CARTO® 3 (C3) with “fast anatomical mapping” (ALARA+C3) was added to the ALARA protocol. Intravascular echo was not utilised. Demographics, procedural, and radiation data were analysed and compared between the two protocols. Results: A total of 75 patients were included: 42 ALARA patients, and 33 ALARA+C3 patients. Patient demographics were similar between the two groups. The acute success rate in ALARA was 95%, and 100% in ALARA+C3; no catheterisation-related complications were observed. Procedural time was 125.7 minutes in the ALARA group versus 131.4 in ALARA+C3 (p=0.36). Radiation doses were significantly lower in the ALARA+C3 group with a mean air Kerma in ALARA+C3 of 13.1±28.3 mGy (SD) compared with 93.8±112 mGy in ALARA (p |
---|---|
ISSN: | 1047-9511 1467-1107 |
DOI: | 10.1017/S1047951114001474 |