Loading…

The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio

The in-plane dynamic crushing behaviors and energy-absorbed characteristics of honeycombs with negative Poisson’s ratio (NPR) have been studied by means of explicit dynamic finite element analysis (DFEA) using ANSYS/LS-DYNA. First, the honeycomb models filled with different reentrant cells by the va...

Full description

Saved in:
Bibliographic Details
Published in:The journal of sandwich structures & materials 2015-01, Vol.17 (1), p.26-55
Main Authors: Zhang, Xin-Chun, An, Li-Qiang, Ding, Hai-Min, Zhu, Xiao-Yan, El-Rich, Marwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The in-plane dynamic crushing behaviors and energy-absorbed characteristics of honeycombs with negative Poisson’s ratio (NPR) have been studied by means of explicit dynamic finite element analysis (DFEA) using ANSYS/LS-DYNA. First, the honeycomb models filled with different reentrant cells by the variation of micro-cell configuration parameters (cell-wall angle and shape ratio) are established. The respective influences of micro-structure and impact velocities on the deformation behaviors, the dynamic plateau stresses and the absorbed energy of reentrant honeycombs are explored in detail. It is shown that owing to the variation of cell micro-structure, reentrant honeycombs display different macro-/micro- deformation properties during the crushing. For the given impact velocity, the dynamic plateau stresses are related to the shape ratio by a power law and to the cell-wall angle by least-square curves. And they are also proportional to the square of impact velocities for a high impact velocity. Based on the finite element simulated results and one-dimensional shock wave theory, an empirical formula for auxetic honeycomb to predict the dynamic plateau stress is derived in terms of relative density and impact velocity.
ISSN:1099-6362
1530-7972
DOI:10.1177/1099636214554180