Loading…
Robust regulation of a class of nonlinear systems using singular perturbation approach
In this paper, we consider robust regulation of a class of nonlinear systems, via H ∞ controller using singular perturbation approach. First, using normal form equations, we eliminate the nonlinear part of the system matrix of equations of system and transform it to a linear diagonal form. Separatin...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c171t-61f52b3f9b89a7ef8ca5e43ccf115642284055d8d63baf0844c2bf9cbef6c5793 |
---|---|
cites | |
container_end_page | 837 |
container_issue | |
container_start_page | 833 |
container_title | |
container_volume | |
creator | Amjadifard, R. Yazdanpanah, M. J. Beheshti, M. T. H. |
description | In this paper, we consider robust regulation of a class of nonlinear systems, via H ∞ controller using singular perturbation approach. First, using normal form equations, we eliminate the nonlinear part of the system matrix of equations of system and transform it to a linear diagonal form. Separating new equations to slow and fast subsystems, due to the singular perturbation approach and with the assumption of norm-boundedness of the fast dynamics, we can treat them as disturbance and design H ∞ controller for a system with a lower order than the original one that stabilizes the overall closed loop system. The proposed method is applied to a single link, flexible joint robot manipulator. |
doi_str_mv | 10.23919/ECC.2003.7085061 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686436137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7085061</ieee_id><sourcerecordid>1686436137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c171t-61f52b3f9b89a7ef8ca5e43ccf115642284055d8d63baf0844c2bf9cbef6c5793</originalsourceid><addsrcrecordid>eNotkElLA0EQhRtEUGN-gHjpo5cZe1-OMsQFAoKo16G7Ux1HZrN75pB_74TkUvUefK8eFEJ3lJSMW2ofN1VVMkJ4qYmRRNELdMOtZIJqrs0VWuf8SwihVi1eXqPvj8HPecIJ9nPrpmbo8RCxw6F1OR9lP_Rt04NLOB_yBF3Gc276PT6OJZHwCGmakz9l3TimwYWfW3QZXZthfd4r9PW8-axei-37y1v1tC0C1XQqFI2SeR6tN9ZpiCY4CYKHECmVSjBmBJFyZ3aKexeJESIwH23wEFWQ2vIVejjdXWr_ZshT3TU5QNu6HoY511QZJbiiXC_o_QltAKAeU9O5dKjPX-L_EINeww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1686436137</pqid></control><display><type>conference_proceeding</type><title>Robust regulation of a class of nonlinear systems using singular perturbation approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Amjadifard, R. ; Yazdanpanah, M. J. ; Beheshti, M. T. H.</creator><creatorcontrib>Amjadifard, R. ; Yazdanpanah, M. J. ; Beheshti, M. T. H.</creatorcontrib><description>In this paper, we consider robust regulation of a class of nonlinear systems, via H ∞ controller using singular perturbation approach. First, using normal form equations, we eliminate the nonlinear part of the system matrix of equations of system and transform it to a linear diagonal form. Separating new equations to slow and fast subsystems, due to the singular perturbation approach and with the assumption of norm-boundedness of the fast dynamics, we can treat them as disturbance and design H ∞ controller for a system with a lower order than the original one that stabilizes the overall closed loop system. The proposed method is applied to a single link, flexible joint robot manipulator.</description><identifier>ISBN: 3952417378</identifier><identifier>ISBN: 9783952417379</identifier><identifier>DOI: 10.23919/ECC.2003.7085061</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control ; Disturbances ; Dynamical systems ; Dynamics ; Eigenvalues and eigenfunctions ; H ∞ Controller ; Manipulators ; Mathematical analysis ; Mathematical model ; Nonlinear dynamics ; Nonlinear systems ; Robots ; Robust Control ; Robustness ; Singular perturbation ; Singularly Perturbed Systems ; Uncertainty</subject><ispartof>2003 European Control Conference (ECC), 2003, p.833-837</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c171t-61f52b3f9b89a7ef8ca5e43ccf115642284055d8d63baf0844c2bf9cbef6c5793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7085061$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7085061$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amjadifard, R.</creatorcontrib><creatorcontrib>Yazdanpanah, M. J.</creatorcontrib><creatorcontrib>Beheshti, M. T. H.</creatorcontrib><title>Robust regulation of a class of nonlinear systems using singular perturbation approach</title><title>2003 European Control Conference (ECC)</title><addtitle>ECC</addtitle><description>In this paper, we consider robust regulation of a class of nonlinear systems, via H ∞ controller using singular perturbation approach. First, using normal form equations, we eliminate the nonlinear part of the system matrix of equations of system and transform it to a linear diagonal form. Separating new equations to slow and fast subsystems, due to the singular perturbation approach and with the assumption of norm-boundedness of the fast dynamics, we can treat them as disturbance and design H ∞ controller for a system with a lower order than the original one that stabilizes the overall closed loop system. The proposed method is applied to a single link, flexible joint robot manipulator.</description><subject>Control</subject><subject>Disturbances</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Eigenvalues and eigenfunctions</subject><subject>H ∞ Controller</subject><subject>Manipulators</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Robots</subject><subject>Robust Control</subject><subject>Robustness</subject><subject>Singular perturbation</subject><subject>Singularly Perturbed Systems</subject><subject>Uncertainty</subject><isbn>3952417378</isbn><isbn>9783952417379</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkElLA0EQhRtEUGN-gHjpo5cZe1-OMsQFAoKo16G7Ux1HZrN75pB_74TkUvUefK8eFEJ3lJSMW2ofN1VVMkJ4qYmRRNELdMOtZIJqrs0VWuf8SwihVi1eXqPvj8HPecIJ9nPrpmbo8RCxw6F1OR9lP_Rt04NLOB_yBF3Gc276PT6OJZHwCGmakz9l3TimwYWfW3QZXZthfd4r9PW8-axei-37y1v1tC0C1XQqFI2SeR6tN9ZpiCY4CYKHECmVSjBmBJFyZ3aKexeJESIwH23wEFWQ2vIVejjdXWr_ZshT3TU5QNu6HoY511QZJbiiXC_o_QltAKAeU9O5dKjPX-L_EINeww</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Amjadifard, R.</creator><creator>Yazdanpanah, M. J.</creator><creator>Beheshti, M. T. H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20030901</creationdate><title>Robust regulation of a class of nonlinear systems using singular perturbation approach</title><author>Amjadifard, R. ; Yazdanpanah, M. J. ; Beheshti, M. T. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c171t-61f52b3f9b89a7ef8ca5e43ccf115642284055d8d63baf0844c2bf9cbef6c5793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Control</topic><topic>Disturbances</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Eigenvalues and eigenfunctions</topic><topic>H ∞ Controller</topic><topic>Manipulators</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Robots</topic><topic>Robust Control</topic><topic>Robustness</topic><topic>Singular perturbation</topic><topic>Singularly Perturbed Systems</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Amjadifard, R.</creatorcontrib><creatorcontrib>Yazdanpanah, M. J.</creatorcontrib><creatorcontrib>Beheshti, M. T. H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amjadifard, R.</au><au>Yazdanpanah, M. J.</au><au>Beheshti, M. T. H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust regulation of a class of nonlinear systems using singular perturbation approach</atitle><btitle>2003 European Control Conference (ECC)</btitle><stitle>ECC</stitle><date>2003-09-01</date><risdate>2003</risdate><spage>833</spage><epage>837</epage><pages>833-837</pages><isbn>3952417378</isbn><isbn>9783952417379</isbn><abstract>In this paper, we consider robust regulation of a class of nonlinear systems, via H ∞ controller using singular perturbation approach. First, using normal form equations, we eliminate the nonlinear part of the system matrix of equations of system and transform it to a linear diagonal form. Separating new equations to slow and fast subsystems, due to the singular perturbation approach and with the assumption of norm-boundedness of the fast dynamics, we can treat them as disturbance and design H ∞ controller for a system with a lower order than the original one that stabilizes the overall closed loop system. The proposed method is applied to a single link, flexible joint robot manipulator.</abstract><pub>IEEE</pub><doi>10.23919/ECC.2003.7085061</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 3952417378 |
ispartof | 2003 European Control Conference (ECC), 2003, p.833-837 |
issn | |
language | eng |
recordid | cdi_proquest_miscellaneous_1686436137 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Control Disturbances Dynamical systems Dynamics Eigenvalues and eigenfunctions H ∞ Controller Manipulators Mathematical analysis Mathematical model Nonlinear dynamics Nonlinear systems Robots Robust Control Robustness Singular perturbation Singularly Perturbed Systems Uncertainty |
title | Robust regulation of a class of nonlinear systems using singular perturbation approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20regulation%20of%20a%20class%20of%20nonlinear%20systems%20using%20singular%20perturbation%20approach&rft.btitle=2003%20European%20Control%20Conference%20(ECC)&rft.au=Amjadifard,%20R.&rft.date=2003-09-01&rft.spage=833&rft.epage=837&rft.pages=833-837&rft.isbn=3952417378&rft.isbn_list=9783952417379&rft_id=info:doi/10.23919/ECC.2003.7085061&rft_dat=%3Cproquest_6IE%3E1686436137%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c171t-61f52b3f9b89a7ef8ca5e43ccf115642284055d8d63baf0844c2bf9cbef6c5793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1686436137&rft_id=info:pmid/&rft_ieee_id=7085061&rfr_iscdi=true |