Loading…

Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning

This paper proposes a method to the model constraints from different models to run an optimization over models with different granularities. Through machine learning, the proposed method has proven to be able to accurately map the constraints and minimize the number of call to the model. It handles...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2015-03, Vol.51 (3), p.1-4
Main Authors: Arnoux, Pierre-Hadrien, Caillard, Pierre, Gillon, Frederic
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83
cites cdi_FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83
container_end_page 4
container_issue 3
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 51
creator Arnoux, Pierre-Hadrien
Caillard, Pierre
Gillon, Frederic
description This paper proposes a method to the model constraints from different models to run an optimization over models with different granularities. Through machine learning, the proposed method has proven to be able to accurately map the constraints and minimize the number of call to the model. It handles both continuous and discrete variables and mixes design rules to statistic approach to create a surrogate of the model.
doi_str_mv 10.1109/TMAG.2014.2364031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686441456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7093402</ieee_id><sourcerecordid>3703446521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqXwAxCLJRaWFH_FiceqtAWpVSXUzpHjXIqr1Cm2O8CvJ1ELA9N9Pffq7kXonpIRpUQ9r5fj-YgRKkaMS0E4vUADqgRNCJHqEg0IoXmihBTX6CaEXVeKlJIB2i3bChrrtnhmnY2QTBvYg4t40roQvbZdGlv8fnRYO9wNTfTW6AYvtfmwDvALBLt1eHWIdm-_dbStw5vQC_4SC9DedY1bdFXrJsDdOQ7RZjZdT16TxWr-NhkvEsOZjElOjBAZS0vISpHzqi6VkrokxJS1MowrorkwtGZGKZHy2lDJy7LSkDHBZJXzIXo66R58-3mEEIu9DQaaRjtoj6GgMpdCdP_LDn38h-7ao3fddT2VsjzP0l6Qnijj2xA81MXB2732XwUlRe9-0btf9O4XZ_e7nYfTjgWAPz4jigvC-A_QrIB2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685288758</pqid></control><display><type>article</type><title>Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Arnoux, Pierre-Hadrien ; Caillard, Pierre ; Gillon, Frederic</creator><creatorcontrib>Arnoux, Pierre-Hadrien ; Caillard, Pierre ; Gillon, Frederic</creatorcontrib><description>This paper proposes a method to the model constraints from different models to run an optimization over models with different granularities. Through machine learning, the proposed method has proven to be able to accurately map the constraints and minimize the number of call to the model. It handles both continuous and discrete variables and mixes design rules to statistic approach to create a surrogate of the model.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2014.2364031</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Computational modeling ; Design optimization ; Entropy ; Finite element method ; Handles ; Iron ; Machine learning ; Magnetism ; Mathematical analysis ; Mathematical models ; Mixes ; Optimization ; Prediction algorithms ; Statistics ; Vegetation</subject><ispartof>IEEE transactions on magnetics, 2015-03, Vol.51 (3), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83</citedby><cites>FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7093402$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Arnoux, Pierre-Hadrien</creatorcontrib><creatorcontrib>Caillard, Pierre</creatorcontrib><creatorcontrib>Gillon, Frederic</creatorcontrib><title>Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper proposes a method to the model constraints from different models to run an optimization over models with different granularities. Through machine learning, the proposed method has proven to be able to accurately map the constraints and minimize the number of call to the model. It handles both continuous and discrete variables and mixes design rules to statistic approach to create a surrogate of the model.</description><subject>Algorithm design and analysis</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Entropy</subject><subject>Finite element method</subject><subject>Handles</subject><subject>Iron</subject><subject>Machine learning</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mixes</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Statistics</subject><subject>Vegetation</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqXwAxCLJRaWFH_FiceqtAWpVSXUzpHjXIqr1Cm2O8CvJ1ELA9N9Pffq7kXonpIRpUQ9r5fj-YgRKkaMS0E4vUADqgRNCJHqEg0IoXmihBTX6CaEXVeKlJIB2i3bChrrtnhmnY2QTBvYg4t40roQvbZdGlv8fnRYO9wNTfTW6AYvtfmwDvALBLt1eHWIdm-_dbStw5vQC_4SC9DedY1bdFXrJsDdOQ7RZjZdT16TxWr-NhkvEsOZjElOjBAZS0vISpHzqi6VkrokxJS1MowrorkwtGZGKZHy2lDJy7LSkDHBZJXzIXo66R58-3mEEIu9DQaaRjtoj6GgMpdCdP_LDn38h-7ao3fddT2VsjzP0l6Qnijj2xA81MXB2732XwUlRe9-0btf9O4XZ_e7nYfTjgWAPz4jigvC-A_QrIB2</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Arnoux, Pierre-Hadrien</creator><creator>Caillard, Pierre</creator><creator>Gillon, Frederic</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201503</creationdate><title>Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning</title><author>Arnoux, Pierre-Hadrien ; Caillard, Pierre ; Gillon, Frederic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Entropy</topic><topic>Finite element method</topic><topic>Handles</topic><topic>Iron</topic><topic>Machine learning</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mixes</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Statistics</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Arnoux, Pierre-Hadrien</creatorcontrib><creatorcontrib>Caillard, Pierre</creatorcontrib><creatorcontrib>Gillon, Frederic</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnoux, Pierre-Hadrien</au><au>Caillard, Pierre</au><au>Gillon, Frederic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2015-03</date><risdate>2015</risdate><volume>51</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper proposes a method to the model constraints from different models to run an optimization over models with different granularities. Through machine learning, the proposed method has proven to be able to accurately map the constraints and minimize the number of call to the model. It handles both continuous and discrete variables and mixes design rules to statistic approach to create a surrogate of the model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2014.2364031</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2015-03, Vol.51 (3), p.1-4
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_miscellaneous_1686441456
source IEEE Electronic Library (IEL) Journals
subjects Algorithm design and analysis
Computational modeling
Design optimization
Entropy
Finite element method
Handles
Iron
Machine learning
Magnetism
Mathematical analysis
Mathematical models
Mixes
Optimization
Prediction algorithms
Statistics
Vegetation
title Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Finite-Element%20Constraint%20to%20Run%20an%20Electrical%20Machine%20Design%20Optimization%20Using%20Machine%20Learning&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Arnoux,%20Pierre-Hadrien&rft.date=2015-03&rft.volume=51&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2014.2364031&rft_dat=%3Cproquest_cross%3E3703446521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685288758&rft_id=info:pmid/&rft_ieee_id=7093402&rfr_iscdi=true