Loading…
Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning
This paper proposes a method to the model constraints from different models to run an optimization over models with different granularities. Through machine learning, the proposed method has proven to be able to accurately map the constraints and minimize the number of call to the model. It handles...
Saved in:
Published in: | IEEE transactions on magnetics 2015-03, Vol.51 (3), p.1-4 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83 |
container_end_page | 4 |
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 51 |
creator | Arnoux, Pierre-Hadrien Caillard, Pierre Gillon, Frederic |
description | This paper proposes a method to the model constraints from different models to run an optimization over models with different granularities. Through machine learning, the proposed method has proven to be able to accurately map the constraints and minimize the number of call to the model. It handles both continuous and discrete variables and mixes design rules to statistic approach to create a surrogate of the model. |
doi_str_mv | 10.1109/TMAG.2014.2364031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1686441456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7093402</ieee_id><sourcerecordid>3703446521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqXwAxCLJRaWFH_FiceqtAWpVSXUzpHjXIqr1Cm2O8CvJ1ELA9N9Pffq7kXonpIRpUQ9r5fj-YgRKkaMS0E4vUADqgRNCJHqEg0IoXmihBTX6CaEXVeKlJIB2i3bChrrtnhmnY2QTBvYg4t40roQvbZdGlv8fnRYO9wNTfTW6AYvtfmwDvALBLt1eHWIdm-_dbStw5vQC_4SC9DedY1bdFXrJsDdOQ7RZjZdT16TxWr-NhkvEsOZjElOjBAZS0vISpHzqi6VkrokxJS1MowrorkwtGZGKZHy2lDJy7LSkDHBZJXzIXo66R58-3mEEIu9DQaaRjtoj6GgMpdCdP_LDn38h-7ao3fddT2VsjzP0l6Qnijj2xA81MXB2732XwUlRe9-0btf9O4XZ_e7nYfTjgWAPz4jigvC-A_QrIB2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685288758</pqid></control><display><type>article</type><title>Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Arnoux, Pierre-Hadrien ; Caillard, Pierre ; Gillon, Frederic</creator><creatorcontrib>Arnoux, Pierre-Hadrien ; Caillard, Pierre ; Gillon, Frederic</creatorcontrib><description>This paper proposes a method to the model constraints from different models to run an optimization over models with different granularities. Through machine learning, the proposed method has proven to be able to accurately map the constraints and minimize the number of call to the model. It handles both continuous and discrete variables and mixes design rules to statistic approach to create a surrogate of the model.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2014.2364031</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Computational modeling ; Design optimization ; Entropy ; Finite element method ; Handles ; Iron ; Machine learning ; Magnetism ; Mathematical analysis ; Mathematical models ; Mixes ; Optimization ; Prediction algorithms ; Statistics ; Vegetation</subject><ispartof>IEEE transactions on magnetics, 2015-03, Vol.51 (3), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83</citedby><cites>FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7093402$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Arnoux, Pierre-Hadrien</creatorcontrib><creatorcontrib>Caillard, Pierre</creatorcontrib><creatorcontrib>Gillon, Frederic</creatorcontrib><title>Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper proposes a method to the model constraints from different models to run an optimization over models with different granularities. Through machine learning, the proposed method has proven to be able to accurately map the constraints and minimize the number of call to the model. It handles both continuous and discrete variables and mixes design rules to statistic approach to create a surrogate of the model.</description><subject>Algorithm design and analysis</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Entropy</subject><subject>Finite element method</subject><subject>Handles</subject><subject>Iron</subject><subject>Machine learning</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mixes</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Statistics</subject><subject>Vegetation</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqXwAxCLJRaWFH_FiceqtAWpVSXUzpHjXIqr1Cm2O8CvJ1ELA9N9Pffq7kXonpIRpUQ9r5fj-YgRKkaMS0E4vUADqgRNCJHqEg0IoXmihBTX6CaEXVeKlJIB2i3bChrrtnhmnY2QTBvYg4t40roQvbZdGlv8fnRYO9wNTfTW6AYvtfmwDvALBLt1eHWIdm-_dbStw5vQC_4SC9DedY1bdFXrJsDdOQ7RZjZdT16TxWr-NhkvEsOZjElOjBAZS0vISpHzqi6VkrokxJS1MowrorkwtGZGKZHy2lDJy7LSkDHBZJXzIXo66R58-3mEEIu9DQaaRjtoj6GgMpdCdP_LDn38h-7ao3fddT2VsjzP0l6Qnijj2xA81MXB2732XwUlRe9-0btf9O4XZ_e7nYfTjgWAPz4jigvC-A_QrIB2</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Arnoux, Pierre-Hadrien</creator><creator>Caillard, Pierre</creator><creator>Gillon, Frederic</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201503</creationdate><title>Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning</title><author>Arnoux, Pierre-Hadrien ; Caillard, Pierre ; Gillon, Frederic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Entropy</topic><topic>Finite element method</topic><topic>Handles</topic><topic>Iron</topic><topic>Machine learning</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mixes</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Statistics</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Arnoux, Pierre-Hadrien</creatorcontrib><creatorcontrib>Caillard, Pierre</creatorcontrib><creatorcontrib>Gillon, Frederic</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnoux, Pierre-Hadrien</au><au>Caillard, Pierre</au><au>Gillon, Frederic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2015-03</date><risdate>2015</risdate><volume>51</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper proposes a method to the model constraints from different models to run an optimization over models with different granularities. Through machine learning, the proposed method has proven to be able to accurately map the constraints and minimize the number of call to the model. It handles both continuous and discrete variables and mixes design rules to statistic approach to create a surrogate of the model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2014.2364031</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2015-03, Vol.51 (3), p.1-4 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1686441456 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithm design and analysis Computational modeling Design optimization Entropy Finite element method Handles Iron Machine learning Magnetism Mathematical analysis Mathematical models Mixes Optimization Prediction algorithms Statistics Vegetation |
title | Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Finite-Element%20Constraint%20to%20Run%20an%20Electrical%20Machine%20Design%20Optimization%20Using%20Machine%20Learning&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Arnoux,%20Pierre-Hadrien&rft.date=2015-03&rft.volume=51&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2014.2364031&rft_dat=%3Cproquest_cross%3E3703446521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-80c44725be7b483dfb996ab00cbf9c2390a34c1f2c99453fc163bbdae72426d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685288758&rft_id=info:pmid/&rft_ieee_id=7093402&rfr_iscdi=true |