Loading…
Polarimetric SAR image signatures of the ocean and Gulf Stream features
Polarimetric signatures and related polarimetric properties of microwave ocean backscatter are analyzed for both the ambient ocean and for ocean features such as those associated with the Gulf Stream. Interpretation of the polarimetric signatures for the ocean surface is accomplished using a tilted-...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 1993-11, Vol.31 (6), p.1210-1221 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polarimetric signatures and related polarimetric properties of microwave ocean backscatter are analyzed for both the ambient ocean and for ocean features such as those associated with the Gulf Stream. Interpretation of the polarimetric signatures for the ocean surface is accomplished using a tilted-Bragg theoretical model. This model is used to calculate the EM fields, to second order, which is necessary to compute the full Stokes matrix and, ultimately, the polarimetric signature. The polarimetric studies lead to a technique for potentially improving the visibility of all azimuthally traveling waves in real-aperture radar (RAR) images and very long waves in synthetic-aperture radar (SAR) images. This technique utilizes linear polarization signatures to maximize the instrument sensitivity to azimuthally traveling waves. Wave tilts create a modulation of the cell polarization orientation which, in turn, modulates the backscatter. Critical to the success of this technique is that the ocean polarimetric signatures be sharply peaked (i.e., returns be highly polarized). The polarimetric contribution to the overall modulation transfer function is evaluated.< > |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/36.317442 |