Loading…
Surface charge and interactions of 20-nm nanocolloids in a nematic liquid crystal
We studied real-time motion of individual 20-nm silica nanoparticles in a thin layer of a nematic liquid crystal using a dark-field optical videomicroscopy. By tracking the positions of individual nanoparticles we observed that particle pair interactions are not only mediated by strong thermal fluct...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-04, Vol.91 (4), p.042505-042505, Article 042505 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We studied real-time motion of individual 20-nm silica nanoparticles in a thin layer of a nematic liquid crystal using a dark-field optical videomicroscopy. By tracking the positions of individual nanoparticles we observed that particle pair interactions are not only mediated by strong thermal fluctuations of the nematic liquid crystal, but also with a repulsive force of electric origin. We determined the total electric charge of silanated silica particles in the nematic liquid crystal 5CB by observing the electric-force-driven drift. Surprisingly, the surface electric charge density depends on colloidal size and is ∼4.5×10(-3)C/m(2) for 20-nm nanocolloids, and two orders of magnitude lower, i.e., ∼2.3×10(-5)C/m(2), for 1-μm colloids. We conclude that electrostatic repulsion between like-charged particles prevents the formation of permanent colloidal assemblies of nanometer size. We also observed strong attraction of 20-nm silica nanoparticles to confining polyimide surfaces and larger clusters, which gradually results in complete expulsion of nanoparticles from the nematic liquid crystal to the surfaces of the confining cell. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.91.042505 |