Loading…

Differentiation of Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells into Steroid-Producing Cells

Although there have been reports of the differentiation of mesenchymal stem cells and mouse embryonic stem (ES) cells into steroid-producing cells, the differentiation of human ES/induced pluripotent stem (iPS) cells into steroid-producing cells has not been reported. The purpose of our present stud...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 2012-09, Vol.153 (9), p.4336-4345
Main Authors: Sonoyama, Takuhiro, Sone, Masakatsu, Honda, Kyoko, Taura, Daisuke, Kojima, Katsutoshi, Inuzuka, Megumi, Kanamoto, Naotetsu, Tamura, Naohisa, Nakao, Kazuwa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although there have been reports of the differentiation of mesenchymal stem cells and mouse embryonic stem (ES) cells into steroid-producing cells, the differentiation of human ES/induced pluripotent stem (iPS) cells into steroid-producing cells has not been reported. The purpose of our present study was to establish a method for inducing differentiation of human ES/iPS cells into steroid-producing cells. The first approach we tried was embryoid body formation and further culture on adherent plates. The resultant differentiated cells expressed mRNA encoding the steroidogenic enzymes steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, cytochrome P450-containing enzyme (CYP)-11A1, CYP17A1, and CYP19, and secreted progesterone was detected in the cell medium. However, expression of human chorionic gonadotropin was also detected, suggesting the differentiated cells were trophoblast like. We next tried a multistep approach. As a first step, human ES/iPS cells were induced to differentiate into the mesodermal lineage. After 7 d of differentiation induced by 6-bromoindirubin-3′-oxime (a glycogen synthase kinase-3β inhibitor), the human ES/iPS cells had differentiated into fetal liver kinase-1- and platelet derived growth factor receptor-α-expressing mesodermal lineage cells. As a second step, plasmid DNA encoding steroidogenic factor-1, a master regulator of steroidogenesis, was introduced into these mesodermal cells. The forced expression of steroidogenic factor-1 and subsequent addition of 8-bromoadenosine 3′,5′-cyclic monophosphate induced the mesodermal cells to differentiate into the steroidogenic cell lineage, and expression of CYP21A2 and CYP11B1, in addition to steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, CYP11A1, and CYP17A1, was detected. Moreover, secreted cortisol was detected in the medium, but human chorionic gonadotropin was not. These findings indicate that the steroid-producing cells obtained through the described multistep method are not trophoblast like; instead, they exhibit characteristics of adrenal cortical cells.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2012-1060