Loading…

Investigation of star formation toward the Sharpless 155 H II region

We present a comprehensive study of star formation toward the H II re- gion Sharpless 155 ($155). Star-formation activities therein were investigated based on multi-wavelength data from optical to the far-infrared. The surface density distri- bution of selected 2MASS sources toward S 155 indicates t...

Full description

Saved in:
Bibliographic Details
Published in:Research in astronomy and astrophysics 2014-10, Vol.14 (10), p.1269-1278
Main Authors: Huang, Ya-Fang, Li, Jin-Zeng, Rector, Travis A., Fan, Zhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a comprehensive study of star formation toward the H II re- gion Sharpless 155 ($155). Star-formation activities therein were investigated based on multi-wavelength data from optical to the far-infrared. The surface density distri- bution of selected 2MASS sources toward S 155 indicates the existence of a compact cluster, which is spatially consistent with the position of the exciting source of the Htt region, HD 217086. A sample of more than 200 sources with excessive emission in the infrared were selected based on their 2MASS color indices. The spatial distri- bution of the sample sources reveals the existence of three young subclusters in this region, among which subcluster A is spatially coincident with the bright rim of the H II region. In addition, photometric data from the WISE survey were used to identify and classify young stellar objects (YSOs). To further explore the evolutionary stages of the candidate YSOs, we fit the spectral energy distributions of 44 sources, which led to the identification of 14 Class I, 27 Class II and 3 Class Ⅲ YSOs. The spatial distribu- tion of the classified YSOs at different evolutionary stages presents a spatiotemporal gradient, which is consistent with a scenario of sequential star formation. On the other hand, Herschel PACS observations toward the interface between S 155 and the ambi- ent molecular cloud disclose an arc-shaped dust layer, the origin of which could be attributed to the UV dissipation from early type stars, e.g. HD 217061, in S155. Four dusty cores were revealed by the Herschel data, which hints at new generations of star formation.
ISSN:1674-4527
2397-6209
DOI:10.1088/1674-4527/14/10/006