Loading…

K(V)7.4 channels participate in the control of rodent renal vascular resting tone

We tested the hypothesis that K(V)7 channels contribute to basal renal vascular tone and that they participate in agonist-induced renal vasoconstriction or vasodilation. KV 7 channel subtypes in renal arterioles were characterized by immunofluorescence. Renal blood flow (RBF) was measured using an u...

Full description

Saved in:
Bibliographic Details
Published in:Acta physiologica (Oxford, England) England), 2015-07, Vol.214 (3), p.402-414
Main Authors: Salomonsson, M, Brasen, J C, Braunstein, T H, Hagelqvist, P, Holstein-Rathlou, N-H, Sorensen, C M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We tested the hypothesis that K(V)7 channels contribute to basal renal vascular tone and that they participate in agonist-induced renal vasoconstriction or vasodilation. KV 7 channel subtypes in renal arterioles were characterized by immunofluorescence. Renal blood flow (RBF) was measured using an ultrasonic flow probe. The isometric tension of rat interlobar arteries was examined in a wire myograph. Mice afferent arteriolar diameter was assessed utilizing the perfused juxtamedullary nephron technique. Immunofluorescence revealed that K(V)7.4 channels were expressed in rat afferent arterioles. The K(V)7 blocker XE991 dose-dependently increased the isometric tension of rat interlobar arteries and caused a small (approx. 4.5%) RBF reduction in vivo. Nifedipine abolished these effects. Likewise, XE991 reduced mouse afferent arteriolar diameter by approx. 5%. The K(V)7.2-5 stimulator flupirtine dose-dependently relaxed isolated rat interlobar arteries and increased (approx. 5%) RBF in vivo. The RBF responses to NE or Ang II administration were not affected by pre-treatment with XE991 or flupirtine. XE991 pre-treatment caused a minor augmentation of the acetylcholine-induced increase in RBF, while flupirtine pre-treatment did not affect this response. It is concluded that K(V)7 channels, via nifedipine sensitive channels, have a role in the regulation of basal renal vascular tone. There is no indication that K(V)7 channels have an effect on agonist-induced renal vasoconstriction while there is a small effect on acetylcholine-induced vasodilation.
ISSN:1748-1716
DOI:10.1111/apha.12525