Loading…
Mn-Mediated Radical-Ionic Annulations of Chiral N‑Acylhydrazones
Sequencing a free radical addition and nucleophilic substitution enables [3 + 2] and [4 + 2] annulations of N-acylhydrazones to afford substituted pyrrolidines and piperidines. Photolysis of alkyl iodides in the presence of Mn2(CO)10 leads to chemoselective iodine atom abstraction and radical additi...
Saved in:
Published in: | Journal of organic chemistry 2015-06, Vol.80 (12), p.6432-6440 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sequencing a free radical addition and nucleophilic substitution enables [3 + 2] and [4 + 2] annulations of N-acylhydrazones to afford substituted pyrrolidines and piperidines. Photolysis of alkyl iodides in the presence of Mn2(CO)10 leads to chemoselective iodine atom abstraction and radical addition to N-acylhydrazones without affecting alkyl chloride functionality. Using radical precursors or acceptors bearing a suitably positioned alkyl chloride, the radical addition is followed by further bond construction enabled by radical–polar crossover. After the alkyl radical adds to the imine bond, the resulting N-nucleophile displaces the alkyl chloride leaving group via 5-exo-tet or 6-exo-tet cyclizations, furnishing either pyrrolidine or piperidine, respectively. When both 5-exo-tet and 6-exo-tet pathways are available, the 5-exo-tet cyclization is preferred. Isolation of the intermediate radical adduct, still bearing the alkyl chloride functionality, confirms the order of events in this radical–polar crossover annulation. A chiral oxazolidinone stereocontrol element in the N-acylhydrazones provides excellent stereocontrol in these reactions. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.5b00863 |