Loading…
Heat collection and supply of interconnected netlike graphene/polyethyleneglycol composites for thermoelectric devices
The key challenges in thermoelectric power conversion are creating a significant temperature difference and obtaining more heat energy through a thermoelectric device. Herein, graphene/polyethyleneglycol composites (G-PEGs) were proposed as a heat supply for thermoelectric devices. The G-PEGs not on...
Saved in:
Published in: | Nanoscale 2015-07, Vol.7 (25), p.10950-10953 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The key challenges in thermoelectric power conversion are creating a significant temperature difference and obtaining more heat energy through a thermoelectric device. Herein, graphene/polyethyleneglycol composites (G-PEGs) were proposed as a heat supply for thermoelectric devices. The G-PEGs not only afford a lot of conductive pathways for heat transfer but also act as highly thermally conductive reservoirs to hold phase-change materials for thermal energy collection, storage and release. The concept described in this study holds great promise in designing multifunctional composites for heat collection, transport, and supply in thermoelectric power conversion. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c5nr02051d |