Loading…

Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries

Objective The low welding strength of laser-assisted vascular anastomosis (LAVA) has hampered the clinical application of LAVA as an alternative to suture anastomosis. To improve welding strength, LAVA in combination with solder and polymeric scaffolds (ssLAVA) has been optimized in vitro. Currently...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vascular surgery 2015-07, Vol.62 (1), p.200-209
Main Authors: Pabittei, Dara R., MD, PhD, Heger, Michal, PhD, van Tuijl, Sjoerd, BSc, MSc, Simonet, Marc, BSc, MSc, de Boon, Wadim, BSc, MSc, van der Wal, Allard C., MD, PhD, Balm, Ron, MD, PhD, de Mol, Bas A., MD, PhD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c587t-b7bf94a24cff07c28e6ab78da46d5958207d296369cadd9e0d4784d5600e45523
cites cdi_FETCH-LOGICAL-c587t-b7bf94a24cff07c28e6ab78da46d5958207d296369cadd9e0d4784d5600e45523
container_end_page 209
container_issue 1
container_start_page 200
container_title Journal of vascular surgery
container_volume 62
creator Pabittei, Dara R., MD, PhD
Heger, Michal, PhD
van Tuijl, Sjoerd, BSc, MSc
Simonet, Marc, BSc, MSc
de Boon, Wadim, BSc, MSc
van der Wal, Allard C., MD, PhD
Balm, Ron, MD, PhD
de Mol, Bas A., MD, PhD
description Objective The low welding strength of laser-assisted vascular anastomosis (LAVA) has hampered the clinical application of LAVA as an alternative to suture anastomosis. To improve welding strength, LAVA in combination with solder and polymeric scaffolds (ssLAVA) has been optimized in vitro. Currently, ssLAVA requires proof-of-concept in a physiologically representative ex vivo model before advancing to in vivo studies. This study therefore investigated the feasibility of ex vivo ssLAVA in medium-sized porcine arteries. Methods Scaffolds composed of poly(ε-caprolactone) (PCL) or poly(lactic-co-glycolic acid) (PLGA) were impregnated with semisolid solder and placed over coapted aortic segments. ssLAVA was performed with a 670-nm diode laser. In the first substudy, the optimum number of laser spots was determined by bursting pressure analysis. The second substudy investigated the resilience of the welds in a Langendorf-type pulsatile pressure setup, monitoring the number of failed vessels. The type of failure (cohesive vs adhesive) was confirmed by electron microscopy, and thermal damage was assessed histologically. The third substudy compared breaking strength of aortic repairs made with PLGA and semisolid genipin solder (ssLAVR) to repairs made with BioGlue. Results ssLAVA with 11 lasing spots and PLGA scaffold yielded the highest bursting pressure (923 ± 56 mm Hg vs 703 ± 96 mm Hg with PCL ssLAVA; P  = .0002) and exhibited the fewest failures (20% vs 70% for PCL ssLAVA; P  = .0218). The two failed PLGA ssLAVA arteries leaked at 19 and 22 hours, whereas the seven failed PCL ssLAVA arteries burst between 12 and 23 hours. PLGA anastomoses broke adhesively, whereas PCL welds failed cohesively. Both modalities exhibited full-thickness thermal damage. Repairs with PLGA scaffold yielded higher breaking strength than BioGlue repairs (323 ± 28 N/cm2 vs 25 ± 4 N/cm2 , respectively; P  = .0003). Conclusions PLGA ssLAVA yields greater anastomotic strength and fewer anastomotic failures than PCL ssLAVA. Aortic repairs with BioGlue were inferior to those produced with PLGA ssLAVR. The results demonstrate the feasibility of ssLAVA/R as an alternative method to suture anastomosis or tissue sealant. Further studies should focus on reducing thermal damage.
doi_str_mv 10.1016/j.jvs.2014.01.064
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1691599484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0741521414001669</els_id><sourcerecordid>1691599484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-b7bf94a24cff07c28e6ab78da46d5958207d296369cadd9e0d4784d5600e45523</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoMo7rj6AF6kj17SpjLpdAdBkGX9Awse1HPIJNWYtqczm-pu3LfxWXwy08zqwYMQKCp89VH1-xh7DqIGAfrVUA8r1VKAqgXUQqsHbAfCtFx3wjxkO9Eq4I0EdcGeEA1CADRd-5hdSKVhD53ZsdvrH79-rnFN1Smn1PPyfJo8nuYq9RVOgc-Jl1KRd32fxlCab64IQjU6wswdUaS5tKsjv4wuV25yNKdjKv-bxyllHyesXJ4xR6Sn7FHvRsJn9_WSfX13_eXqA7_59P7j1dsb7suOMz-0h94oJ5Xve9F62aF2h7YLTunQmKaTog3S6L023oVgUATVdio0WghUTSP3l-zl2bccdrsgzfYYyeM4ugnTQha0gcYY1akihbPU50SUsbenHI8u31kQdiNtB1tI2420FWAL6TLz4t5-ORwx_J34g7YIXp8FWI5cI2ZLPuJGLmb0sw0p_tf-zT_TfoxT9G78jndIQ1ryVOhZsCStsJ-3qLekQZWUtTb73w1XpdM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691599484</pqid></control><display><type>article</type><title>Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Pabittei, Dara R., MD, PhD ; Heger, Michal, PhD ; van Tuijl, Sjoerd, BSc, MSc ; Simonet, Marc, BSc, MSc ; de Boon, Wadim, BSc, MSc ; van der Wal, Allard C., MD, PhD ; Balm, Ron, MD, PhD ; de Mol, Bas A., MD, PhD</creator><creatorcontrib>Pabittei, Dara R., MD, PhD ; Heger, Michal, PhD ; van Tuijl, Sjoerd, BSc, MSc ; Simonet, Marc, BSc, MSc ; de Boon, Wadim, BSc, MSc ; van der Wal, Allard C., MD, PhD ; Balm, Ron, MD, PhD ; de Mol, Bas A., MD, PhD</creatorcontrib><description>Objective The low welding strength of laser-assisted vascular anastomosis (LAVA) has hampered the clinical application of LAVA as an alternative to suture anastomosis. To improve welding strength, LAVA in combination with solder and polymeric scaffolds (ssLAVA) has been optimized in vitro. Currently, ssLAVA requires proof-of-concept in a physiologically representative ex vivo model before advancing to in vivo studies. This study therefore investigated the feasibility of ex vivo ssLAVA in medium-sized porcine arteries. Methods Scaffolds composed of poly(ε-caprolactone) (PCL) or poly(lactic-co-glycolic acid) (PLGA) were impregnated with semisolid solder and placed over coapted aortic segments. ssLAVA was performed with a 670-nm diode laser. In the first substudy, the optimum number of laser spots was determined by bursting pressure analysis. The second substudy investigated the resilience of the welds in a Langendorf-type pulsatile pressure setup, monitoring the number of failed vessels. The type of failure (cohesive vs adhesive) was confirmed by electron microscopy, and thermal damage was assessed histologically. The third substudy compared breaking strength of aortic repairs made with PLGA and semisolid genipin solder (ssLAVR) to repairs made with BioGlue. Results ssLAVA with 11 lasing spots and PLGA scaffold yielded the highest bursting pressure (923 ± 56 mm Hg vs 703 ± 96 mm Hg with PCL ssLAVA; P  = .0002) and exhibited the fewest failures (20% vs 70% for PCL ssLAVA; P  = .0218). The two failed PLGA ssLAVA arteries leaked at 19 and 22 hours, whereas the seven failed PCL ssLAVA arteries burst between 12 and 23 hours. PLGA anastomoses broke adhesively, whereas PCL welds failed cohesively. Both modalities exhibited full-thickness thermal damage. Repairs with PLGA scaffold yielded higher breaking strength than BioGlue repairs (323 ± 28 N/cm2 vs 25 ± 4 N/cm2 , respectively; P  = .0003). Conclusions PLGA ssLAVA yields greater anastomotic strength and fewer anastomotic failures than PCL ssLAVA. Aortic repairs with BioGlue were inferior to those produced with PLGA ssLAVR. The results demonstrate the feasibility of ssLAVA/R as an alternative method to suture anastomosis or tissue sealant. Further studies should focus on reducing thermal damage.</description><identifier>ISSN: 0741-5214</identifier><identifier>EISSN: 1097-6809</identifier><identifier>DOI: 10.1016/j.jvs.2014.01.064</identifier><identifier>PMID: 24613189</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Aorta - physiology ; Aorta - surgery ; Arterial Pressure ; Blood Vessel Prosthesis ; Blood Vessel Prosthesis Implantation - adverse effects ; Blood Vessel Prosthesis Implantation - instrumentation ; Blood Vessel Prosthesis Implantation - methods ; Carotid Arteries - physiology ; Carotid Arteries - surgery ; Feasibility Studies ; Humans ; In Vitro Techniques ; Lactic Acid ; Laser Therapy - instrumentation ; Laser Therapy - methods ; Lasers, Semiconductor ; Models, Animal ; Polyesters ; Polyglycolic Acid ; Prosthesis Design ; Prosthesis Failure ; Pulsatile Flow ; Regional Blood Flow ; Stress, Mechanical ; Surgery ; Swine ; Time Factors ; Tissue Scaffolds</subject><ispartof>Journal of vascular surgery, 2015-07, Vol.62 (1), p.200-209</ispartof><rights>Society for Vascular Surgery</rights><rights>2015 Society for Vascular Surgery</rights><rights>Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-b7bf94a24cff07c28e6ab78da46d5958207d296369cadd9e0d4784d5600e45523</citedby><cites>FETCH-LOGICAL-c587t-b7bf94a24cff07c28e6ab78da46d5958207d296369cadd9e0d4784d5600e45523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24613189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pabittei, Dara R., MD, PhD</creatorcontrib><creatorcontrib>Heger, Michal, PhD</creatorcontrib><creatorcontrib>van Tuijl, Sjoerd, BSc, MSc</creatorcontrib><creatorcontrib>Simonet, Marc, BSc, MSc</creatorcontrib><creatorcontrib>de Boon, Wadim, BSc, MSc</creatorcontrib><creatorcontrib>van der Wal, Allard C., MD, PhD</creatorcontrib><creatorcontrib>Balm, Ron, MD, PhD</creatorcontrib><creatorcontrib>de Mol, Bas A., MD, PhD</creatorcontrib><title>Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries</title><title>Journal of vascular surgery</title><addtitle>J Vasc Surg</addtitle><description>Objective The low welding strength of laser-assisted vascular anastomosis (LAVA) has hampered the clinical application of LAVA as an alternative to suture anastomosis. To improve welding strength, LAVA in combination with solder and polymeric scaffolds (ssLAVA) has been optimized in vitro. Currently, ssLAVA requires proof-of-concept in a physiologically representative ex vivo model before advancing to in vivo studies. This study therefore investigated the feasibility of ex vivo ssLAVA in medium-sized porcine arteries. Methods Scaffolds composed of poly(ε-caprolactone) (PCL) or poly(lactic-co-glycolic acid) (PLGA) were impregnated with semisolid solder and placed over coapted aortic segments. ssLAVA was performed with a 670-nm diode laser. In the first substudy, the optimum number of laser spots was determined by bursting pressure analysis. The second substudy investigated the resilience of the welds in a Langendorf-type pulsatile pressure setup, monitoring the number of failed vessels. The type of failure (cohesive vs adhesive) was confirmed by electron microscopy, and thermal damage was assessed histologically. The third substudy compared breaking strength of aortic repairs made with PLGA and semisolid genipin solder (ssLAVR) to repairs made with BioGlue. Results ssLAVA with 11 lasing spots and PLGA scaffold yielded the highest bursting pressure (923 ± 56 mm Hg vs 703 ± 96 mm Hg with PCL ssLAVA; P  = .0002) and exhibited the fewest failures (20% vs 70% for PCL ssLAVA; P  = .0218). The two failed PLGA ssLAVA arteries leaked at 19 and 22 hours, whereas the seven failed PCL ssLAVA arteries burst between 12 and 23 hours. PLGA anastomoses broke adhesively, whereas PCL welds failed cohesively. Both modalities exhibited full-thickness thermal damage. Repairs with PLGA scaffold yielded higher breaking strength than BioGlue repairs (323 ± 28 N/cm2 vs 25 ± 4 N/cm2 , respectively; P  = .0003). Conclusions PLGA ssLAVA yields greater anastomotic strength and fewer anastomotic failures than PCL ssLAVA. Aortic repairs with BioGlue were inferior to those produced with PLGA ssLAVR. The results demonstrate the feasibility of ssLAVA/R as an alternative method to suture anastomosis or tissue sealant. Further studies should focus on reducing thermal damage.</description><subject>Animals</subject><subject>Aorta - physiology</subject><subject>Aorta - surgery</subject><subject>Arterial Pressure</subject><subject>Blood Vessel Prosthesis</subject><subject>Blood Vessel Prosthesis Implantation - adverse effects</subject><subject>Blood Vessel Prosthesis Implantation - instrumentation</subject><subject>Blood Vessel Prosthesis Implantation - methods</subject><subject>Carotid Arteries - physiology</subject><subject>Carotid Arteries - surgery</subject><subject>Feasibility Studies</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Lactic Acid</subject><subject>Laser Therapy - instrumentation</subject><subject>Laser Therapy - methods</subject><subject>Lasers, Semiconductor</subject><subject>Models, Animal</subject><subject>Polyesters</subject><subject>Polyglycolic Acid</subject><subject>Prosthesis Design</subject><subject>Prosthesis Failure</subject><subject>Pulsatile Flow</subject><subject>Regional Blood Flow</subject><subject>Stress, Mechanical</subject><subject>Surgery</subject><subject>Swine</subject><subject>Time Factors</subject><subject>Tissue Scaffolds</subject><issn>0741-5214</issn><issn>1097-6809</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc-KFDEQxoMo7rj6AF6kj17SpjLpdAdBkGX9Awse1HPIJNWYtqczm-pu3LfxWXwy08zqwYMQKCp89VH1-xh7DqIGAfrVUA8r1VKAqgXUQqsHbAfCtFx3wjxkO9Eq4I0EdcGeEA1CADRd-5hdSKVhD53ZsdvrH79-rnFN1Smn1PPyfJo8nuYq9RVOgc-Jl1KRd32fxlCab64IQjU6wswdUaS5tKsjv4wuV25yNKdjKv-bxyllHyesXJ4xR6Sn7FHvRsJn9_WSfX13_eXqA7_59P7j1dsb7suOMz-0h94oJ5Xve9F62aF2h7YLTunQmKaTog3S6L023oVgUATVdio0WghUTSP3l-zl2bccdrsgzfYYyeM4ugnTQha0gcYY1akihbPU50SUsbenHI8u31kQdiNtB1tI2420FWAL6TLz4t5-ORwx_J34g7YIXp8FWI5cI2ZLPuJGLmb0sw0p_tf-zT_TfoxT9G78jndIQ1ryVOhZsCStsJ-3qLekQZWUtTb73w1XpdM</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Pabittei, Dara R., MD, PhD</creator><creator>Heger, Michal, PhD</creator><creator>van Tuijl, Sjoerd, BSc, MSc</creator><creator>Simonet, Marc, BSc, MSc</creator><creator>de Boon, Wadim, BSc, MSc</creator><creator>van der Wal, Allard C., MD, PhD</creator><creator>Balm, Ron, MD, PhD</creator><creator>de Mol, Bas A., MD, PhD</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries</title><author>Pabittei, Dara R., MD, PhD ; Heger, Michal, PhD ; van Tuijl, Sjoerd, BSc, MSc ; Simonet, Marc, BSc, MSc ; de Boon, Wadim, BSc, MSc ; van der Wal, Allard C., MD, PhD ; Balm, Ron, MD, PhD ; de Mol, Bas A., MD, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-b7bf94a24cff07c28e6ab78da46d5958207d296369cadd9e0d4784d5600e45523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Aorta - physiology</topic><topic>Aorta - surgery</topic><topic>Arterial Pressure</topic><topic>Blood Vessel Prosthesis</topic><topic>Blood Vessel Prosthesis Implantation - adverse effects</topic><topic>Blood Vessel Prosthesis Implantation - instrumentation</topic><topic>Blood Vessel Prosthesis Implantation - methods</topic><topic>Carotid Arteries - physiology</topic><topic>Carotid Arteries - surgery</topic><topic>Feasibility Studies</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Lactic Acid</topic><topic>Laser Therapy - instrumentation</topic><topic>Laser Therapy - methods</topic><topic>Lasers, Semiconductor</topic><topic>Models, Animal</topic><topic>Polyesters</topic><topic>Polyglycolic Acid</topic><topic>Prosthesis Design</topic><topic>Prosthesis Failure</topic><topic>Pulsatile Flow</topic><topic>Regional Blood Flow</topic><topic>Stress, Mechanical</topic><topic>Surgery</topic><topic>Swine</topic><topic>Time Factors</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pabittei, Dara R., MD, PhD</creatorcontrib><creatorcontrib>Heger, Michal, PhD</creatorcontrib><creatorcontrib>van Tuijl, Sjoerd, BSc, MSc</creatorcontrib><creatorcontrib>Simonet, Marc, BSc, MSc</creatorcontrib><creatorcontrib>de Boon, Wadim, BSc, MSc</creatorcontrib><creatorcontrib>van der Wal, Allard C., MD, PhD</creatorcontrib><creatorcontrib>Balm, Ron, MD, PhD</creatorcontrib><creatorcontrib>de Mol, Bas A., MD, PhD</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of vascular surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pabittei, Dara R., MD, PhD</au><au>Heger, Michal, PhD</au><au>van Tuijl, Sjoerd, BSc, MSc</au><au>Simonet, Marc, BSc, MSc</au><au>de Boon, Wadim, BSc, MSc</au><au>van der Wal, Allard C., MD, PhD</au><au>Balm, Ron, MD, PhD</au><au>de Mol, Bas A., MD, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries</atitle><jtitle>Journal of vascular surgery</jtitle><addtitle>J Vasc Surg</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>62</volume><issue>1</issue><spage>200</spage><epage>209</epage><pages>200-209</pages><issn>0741-5214</issn><eissn>1097-6809</eissn><abstract>Objective The low welding strength of laser-assisted vascular anastomosis (LAVA) has hampered the clinical application of LAVA as an alternative to suture anastomosis. To improve welding strength, LAVA in combination with solder and polymeric scaffolds (ssLAVA) has been optimized in vitro. Currently, ssLAVA requires proof-of-concept in a physiologically representative ex vivo model before advancing to in vivo studies. This study therefore investigated the feasibility of ex vivo ssLAVA in medium-sized porcine arteries. Methods Scaffolds composed of poly(ε-caprolactone) (PCL) or poly(lactic-co-glycolic acid) (PLGA) were impregnated with semisolid solder and placed over coapted aortic segments. ssLAVA was performed with a 670-nm diode laser. In the first substudy, the optimum number of laser spots was determined by bursting pressure analysis. The second substudy investigated the resilience of the welds in a Langendorf-type pulsatile pressure setup, monitoring the number of failed vessels. The type of failure (cohesive vs adhesive) was confirmed by electron microscopy, and thermal damage was assessed histologically. The third substudy compared breaking strength of aortic repairs made with PLGA and semisolid genipin solder (ssLAVR) to repairs made with BioGlue. Results ssLAVA with 11 lasing spots and PLGA scaffold yielded the highest bursting pressure (923 ± 56 mm Hg vs 703 ± 96 mm Hg with PCL ssLAVA; P  = .0002) and exhibited the fewest failures (20% vs 70% for PCL ssLAVA; P  = .0218). The two failed PLGA ssLAVA arteries leaked at 19 and 22 hours, whereas the seven failed PCL ssLAVA arteries burst between 12 and 23 hours. PLGA anastomoses broke adhesively, whereas PCL welds failed cohesively. Both modalities exhibited full-thickness thermal damage. Repairs with PLGA scaffold yielded higher breaking strength than BioGlue repairs (323 ± 28 N/cm2 vs 25 ± 4 N/cm2 , respectively; P  = .0003). Conclusions PLGA ssLAVA yields greater anastomotic strength and fewer anastomotic failures than PCL ssLAVA. Aortic repairs with BioGlue were inferior to those produced with PLGA ssLAVR. The results demonstrate the feasibility of ssLAVA/R as an alternative method to suture anastomosis or tissue sealant. Further studies should focus on reducing thermal damage.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24613189</pmid><doi>10.1016/j.jvs.2014.01.064</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-5214
ispartof Journal of vascular surgery, 2015-07, Vol.62 (1), p.200-209
issn 0741-5214
1097-6809
language eng
recordid cdi_proquest_miscellaneous_1691599484
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Aorta - physiology
Aorta - surgery
Arterial Pressure
Blood Vessel Prosthesis
Blood Vessel Prosthesis Implantation - adverse effects
Blood Vessel Prosthesis Implantation - instrumentation
Blood Vessel Prosthesis Implantation - methods
Carotid Arteries - physiology
Carotid Arteries - surgery
Feasibility Studies
Humans
In Vitro Techniques
Lactic Acid
Laser Therapy - instrumentation
Laser Therapy - methods
Lasers, Semiconductor
Models, Animal
Polyesters
Polyglycolic Acid
Prosthesis Design
Prosthesis Failure
Pulsatile Flow
Regional Blood Flow
Stress, Mechanical
Surgery
Swine
Time Factors
Tissue Scaffolds
title Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ex%C2%A0vivo%20proof-of-concept%20of%20end-to-end%20scaffold-enhanced%20laser-assisted%20vascular%20anastomosis%20of%20porcine%20arteries&rft.jtitle=Journal%20of%20vascular%20surgery&rft.au=Pabittei,%20Dara%20R.,%20MD,%20PhD&rft.date=2015-07-01&rft.volume=62&rft.issue=1&rft.spage=200&rft.epage=209&rft.pages=200-209&rft.issn=0741-5214&rft.eissn=1097-6809&rft_id=info:doi/10.1016/j.jvs.2014.01.064&rft_dat=%3Cproquest_cross%3E1691599484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c587t-b7bf94a24cff07c28e6ab78da46d5958207d296369cadd9e0d4784d5600e45523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1691599484&rft_id=info:pmid/24613189&rfr_iscdi=true