Loading…
Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability
This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected;...
Saved in:
Published in: | FEMS microbiology letters 2015-07, Vol.362 (13), p.fnv089-fnv089 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-e7974674ac0380d2c619d47fe44d6e1f30e06707ee165440f49ec47d6cbdeb7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-e7974674ac0380d2c619d47fe44d6e1f30e06707ee165440f49ec47d6cbdeb7a3 |
container_end_page | fnv089 |
container_issue | 13 |
container_start_page | fnv089 |
container_title | FEMS microbiology letters |
container_volume | 362 |
creator | Liu, Dong Zhang, Lu Xue, Wen Wang, Yaping Ju, Jiansong Zhao, Baohua |
description | This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected; deprivation of d-alanine caused the growth arrest of the starved mutant cells, but not cell lysis. No alanine racemase activity was detected in the culture of the mutant. Additionally, a membrane permeability assay showed increasing damage to the cell wall during d-alanine starvation. No such damage was observed in the wild type during culture. Scanning and transmission electron microscopy analyses revealed deficiencies of the cell envelope and perforation of the cell wall. Leakage of UV-absorbing substances from the mutants was also observed. Thus, the partial viability of the mutants and their independence of d-alanine for growth indicated that inactivation of alr-2 does not impose an auxotrophic requirement for d-alanine.
Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability. |
doi_str_mv | 10.1093/femsle/fnv089 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692294744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/femsle/fnv089</oup_id><sourcerecordid>2305554209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-e7974674ac0380d2c619d47fe44d6e1f30e06707ee165440f49ec47d6cbdeb7a3</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhq2qFVDKsVdkiQuXwDhx7PVxQaVURXAp58ixJyQ0toOdUO0P4H_Xq6Uf6qWX8Vh69OjVvIR8ZHDGQFXnHbo04nnnn2Gl3pADVkteCCVWb__a98n7lB4BgJcg9sh-KYBDreCAvHz1wXwPy0xDR-ceqR61HzzSqA06nZA-YP4Nnq4xBhe8TrTf2Bimfhg1vb64vV_3wGjEtIxz2oIGx5H-0HlY7fRDVnpL0ffaG7TUoWujzsoJo0PdDuMwbz6Qd50eEx69vofk_urTt8vr4ubu85fL9U1hqprPBUoluZBcG6hWYEsjmLJcdsi5Fci6ChCEBInIRM05dFyh4dIK01pspa4OyenOO8XwtGCaGzekbd4cKCypYUKVpeKS84ye_IM-hiX6nK4pK6jrOp9SZarYUSaGlCJ2zRQHp-OmYdBs-2l2_TS7fjJ__GpdWof2N_2rkD8JwzL9x_UTOPucJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305554209</pqid></control><display><type>article</type><title>Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability</title><source>Oxford Journals Online</source><creator>Liu, Dong ; Zhang, Lu ; Xue, Wen ; Wang, Yaping ; Ju, Jiansong ; Zhao, Baohua</creator><contributor>Shoemaker, Craig</contributor><creatorcontrib>Liu, Dong ; Zhang, Lu ; Xue, Wen ; Wang, Yaping ; Ju, Jiansong ; Zhao, Baohua ; Shoemaker, Craig</creatorcontrib><description>This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected; deprivation of d-alanine caused the growth arrest of the starved mutant cells, but not cell lysis. No alanine racemase activity was detected in the culture of the mutant. Additionally, a membrane permeability assay showed increasing damage to the cell wall during d-alanine starvation. No such damage was observed in the wild type during culture. Scanning and transmission electron microscopy analyses revealed deficiencies of the cell envelope and perforation of the cell wall. Leakage of UV-absorbing substances from the mutants was also observed. Thus, the partial viability of the mutants and their independence of d-alanine for growth indicated that inactivation of alr-2 does not impose an auxotrophic requirement for d-alanine.
Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability.</description><identifier>ISSN: 1574-6968</identifier><identifier>ISSN: 0378-1097</identifier><identifier>EISSN: 1574-6968</identifier><identifier>DOI: 10.1093/femsle/fnv089</identifier><identifier>PMID: 26040590</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aeromonas hydrophila ; Aeromonas hydrophila - enzymology ; Aeromonas hydrophila - genetics ; Aeromonas hydrophila - physiology ; Aeromonas hydrophila - ultrastructure ; Alanine ; Alanine - metabolism ; Alanine racemase ; Alanine Racemase - genetics ; Alanine Racemase - metabolism ; Cell culture ; Cell Membrane Permeability - genetics ; Cell Wall - genetics ; Cell Wall - metabolism ; Cell Wall - ultrastructure ; Cell walls ; D-Alanine ; Deactivation ; Deprivation ; Gene Knockout Techniques ; Inactivation ; Lysis ; Membrane permeability ; Membranes ; Microbial Viability - genetics ; Microbiology ; Mutants ; Mutation ; Perforation ; Permeability ; Transmission electron microscopy ; Viability</subject><ispartof>FEMS microbiology letters, 2015-07, Vol.362 (13), p.fnv089-fnv089</ispartof><rights>FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2015</rights><rights>FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-e7974674ac0380d2c619d47fe44d6e1f30e06707ee165440f49ec47d6cbdeb7a3</citedby><cites>FETCH-LOGICAL-c354t-e7974674ac0380d2c619d47fe44d6e1f30e06707ee165440f49ec47d6cbdeb7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26040590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shoemaker, Craig</contributor><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Xue, Wen</creatorcontrib><creatorcontrib>Wang, Yaping</creatorcontrib><creatorcontrib>Ju, Jiansong</creatorcontrib><creatorcontrib>Zhao, Baohua</creatorcontrib><title>Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability</title><title>FEMS microbiology letters</title><addtitle>FEMS Microbiol Lett</addtitle><description>This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected; deprivation of d-alanine caused the growth arrest of the starved mutant cells, but not cell lysis. No alanine racemase activity was detected in the culture of the mutant. Additionally, a membrane permeability assay showed increasing damage to the cell wall during d-alanine starvation. No such damage was observed in the wild type during culture. Scanning and transmission electron microscopy analyses revealed deficiencies of the cell envelope and perforation of the cell wall. Leakage of UV-absorbing substances from the mutants was also observed. Thus, the partial viability of the mutants and their independence of d-alanine for growth indicated that inactivation of alr-2 does not impose an auxotrophic requirement for d-alanine.
Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability.</description><subject>Aeromonas hydrophila</subject><subject>Aeromonas hydrophila - enzymology</subject><subject>Aeromonas hydrophila - genetics</subject><subject>Aeromonas hydrophila - physiology</subject><subject>Aeromonas hydrophila - ultrastructure</subject><subject>Alanine</subject><subject>Alanine - metabolism</subject><subject>Alanine racemase</subject><subject>Alanine Racemase - genetics</subject><subject>Alanine Racemase - metabolism</subject><subject>Cell culture</subject><subject>Cell Membrane Permeability - genetics</subject><subject>Cell Wall - genetics</subject><subject>Cell Wall - metabolism</subject><subject>Cell Wall - ultrastructure</subject><subject>Cell walls</subject><subject>D-Alanine</subject><subject>Deactivation</subject><subject>Deprivation</subject><subject>Gene Knockout Techniques</subject><subject>Inactivation</subject><subject>Lysis</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Microbial Viability - genetics</subject><subject>Microbiology</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Perforation</subject><subject>Permeability</subject><subject>Transmission electron microscopy</subject><subject>Viability</subject><issn>1574-6968</issn><issn>0378-1097</issn><issn>1574-6968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3DAQhq2qFVDKsVdkiQuXwDhx7PVxQaVURXAp58ixJyQ0toOdUO0P4H_Xq6Uf6qWX8Vh69OjVvIR8ZHDGQFXnHbo04nnnn2Gl3pADVkteCCVWb__a98n7lB4BgJcg9sh-KYBDreCAvHz1wXwPy0xDR-ceqR61HzzSqA06nZA-YP4Nnq4xBhe8TrTf2Bimfhg1vb64vV_3wGjEtIxz2oIGx5H-0HlY7fRDVnpL0ffaG7TUoWujzsoJo0PdDuMwbz6Qd50eEx69vofk_urTt8vr4ubu85fL9U1hqprPBUoluZBcG6hWYEsjmLJcdsi5Fci6ChCEBInIRM05dFyh4dIK01pspa4OyenOO8XwtGCaGzekbd4cKCypYUKVpeKS84ye_IM-hiX6nK4pK6jrOp9SZarYUSaGlCJ2zRQHp-OmYdBs-2l2_TS7fjJ__GpdWof2N_2rkD8JwzL9x_UTOPucJA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Liu, Dong</creator><creator>Zhang, Lu</creator><creator>Xue, Wen</creator><creator>Wang, Yaping</creator><creator>Ju, Jiansong</creator><creator>Zhao, Baohua</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability</title><author>Liu, Dong ; Zhang, Lu ; Xue, Wen ; Wang, Yaping ; Ju, Jiansong ; Zhao, Baohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-e7974674ac0380d2c619d47fe44d6e1f30e06707ee165440f49ec47d6cbdeb7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aeromonas hydrophila</topic><topic>Aeromonas hydrophila - enzymology</topic><topic>Aeromonas hydrophila - genetics</topic><topic>Aeromonas hydrophila - physiology</topic><topic>Aeromonas hydrophila - ultrastructure</topic><topic>Alanine</topic><topic>Alanine - metabolism</topic><topic>Alanine racemase</topic><topic>Alanine Racemase - genetics</topic><topic>Alanine Racemase - metabolism</topic><topic>Cell culture</topic><topic>Cell Membrane Permeability - genetics</topic><topic>Cell Wall - genetics</topic><topic>Cell Wall - metabolism</topic><topic>Cell Wall - ultrastructure</topic><topic>Cell walls</topic><topic>D-Alanine</topic><topic>Deactivation</topic><topic>Deprivation</topic><topic>Gene Knockout Techniques</topic><topic>Inactivation</topic><topic>Lysis</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Microbial Viability - genetics</topic><topic>Microbiology</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Perforation</topic><topic>Permeability</topic><topic>Transmission electron microscopy</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Xue, Wen</creatorcontrib><creatorcontrib>Wang, Yaping</creatorcontrib><creatorcontrib>Ju, Jiansong</creatorcontrib><creatorcontrib>Zhao, Baohua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dong</au><au>Zhang, Lu</au><au>Xue, Wen</au><au>Wang, Yaping</au><au>Ju, Jiansong</au><au>Zhao, Baohua</au><au>Shoemaker, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability</atitle><jtitle>FEMS microbiology letters</jtitle><addtitle>FEMS Microbiol Lett</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>362</volume><issue>13</issue><spage>fnv089</spage><epage>fnv089</epage><pages>fnv089-fnv089</pages><issn>1574-6968</issn><issn>0378-1097</issn><eissn>1574-6968</eissn><abstract>This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected; deprivation of d-alanine caused the growth arrest of the starved mutant cells, but not cell lysis. No alanine racemase activity was detected in the culture of the mutant. Additionally, a membrane permeability assay showed increasing damage to the cell wall during d-alanine starvation. No such damage was observed in the wild type during culture. Scanning and transmission electron microscopy analyses revealed deficiencies of the cell envelope and perforation of the cell wall. Leakage of UV-absorbing substances from the mutants was also observed. Thus, the partial viability of the mutants and their independence of d-alanine for growth indicated that inactivation of alr-2 does not impose an auxotrophic requirement for d-alanine.
Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26040590</pmid><doi>10.1093/femsle/fnv089</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-6968 |
ispartof | FEMS microbiology letters, 2015-07, Vol.362 (13), p.fnv089-fnv089 |
issn | 1574-6968 0378-1097 1574-6968 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692294744 |
source | Oxford Journals Online |
subjects | Aeromonas hydrophila Aeromonas hydrophila - enzymology Aeromonas hydrophila - genetics Aeromonas hydrophila - physiology Aeromonas hydrophila - ultrastructure Alanine Alanine - metabolism Alanine racemase Alanine Racemase - genetics Alanine Racemase - metabolism Cell culture Cell Membrane Permeability - genetics Cell Wall - genetics Cell Wall - metabolism Cell Wall - ultrastructure Cell walls D-Alanine Deactivation Deprivation Gene Knockout Techniques Inactivation Lysis Membrane permeability Membranes Microbial Viability - genetics Microbiology Mutants Mutation Perforation Permeability Transmission electron microscopy Viability |
title | Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knockout%20of%20the%20alanine%20racemase%20gene%20in%20Aeromonas%20hydrophila%20HBNUAh01%20results%20in%20cell%20wall%20damage%20and%20enhanced%20membrane%20permeability&rft.jtitle=FEMS%20microbiology%20letters&rft.au=Liu,%20Dong&rft.date=2015-07-01&rft.volume=362&rft.issue=13&rft.spage=fnv089&rft.epage=fnv089&rft.pages=fnv089-fnv089&rft.issn=1574-6968&rft.eissn=1574-6968&rft_id=info:doi/10.1093/femsle/fnv089&rft_dat=%3Cproquest_cross%3E2305554209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-e7974674ac0380d2c619d47fe44d6e1f30e06707ee165440f49ec47d6cbdeb7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305554209&rft_id=info:pmid/26040590&rft_oup_id=10.1093/femsle/fnv089&rfr_iscdi=true |