Loading…
Multidimensional Optical Sensing Platform for Detection of Heparin and Reversible Molecular Logic Gate Operation Based on the Phloxine B/Polyethyleneimine System
A multidimensional optical sensing platform which combines the advantages of resonance Rayleigh scattering (RRS), fluorescence, and colorimetry has been designed for detection of heparin. Phloxine B, a fluorescein derivative showing the special RRS spectrum in the long wavelength region, was selecte...
Saved in:
Published in: | Analytical chemistry (Washington) 2015-02, Vol.87 (3), p.1575-1581 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A multidimensional optical sensing platform which combines the advantages of resonance Rayleigh scattering (RRS), fluorescence, and colorimetry has been designed for detection of heparin. Phloxine B, a fluorescein derivative showing the special RRS spectrum in the long wavelength region, was selected to develop an easy-to-get system which can achieve switch-on sensing to obtain high sensitivity. The noise level of RRS in the long wavelength region is much weaker, and the reproducibility is much better; in this way, the sensitivity and selectivity can be improved. In the absence of heparin, the phloxine B and polyethyleneimine (PEI) form a complex through electrostatic interaction. Thus, the RRS signal at 554 nm is low; the phloxine B fluorescence is quenched, and the absorption signal is low. In the presence of heparin, competitive binding occurred between phloxine B and heparin toward PEI; then, phloxine B is gradually released from the phloxine B/PEI complex, causing obvious enhancement of the RRS, fluorescence, and absorption signals. Besides, the desorption of phloxine B is less effective for the heparin analogues, such as hyaluronic acid and chondroitin sulfate. In addition, the system presents a low detection limit of heparin to 5.0 × 10–4 U mL–1 and can also be applied to the detection of heparin in heparin sodium injection and 50% human serum samples with satisfactory results. Finally, the potential application of this method in reversible on–off molecular logic gate fabrication was discussed using the triple-channel optical signals as outputs. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac504023b |