Loading…

Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)

A novel representation of chemical measurements has been devised for which the data are encoded as fuzzy grids instead of the standard convention as a vector. The fuzzy grid encoded data and data in the standard format were evaluated with soft independent modeling for class analogies (SIMCA). The fu...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2014-05, Vol.86 (10), p.4883-4892
Main Author: de Boves Harrington, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533
cites cdi_FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533
container_end_page 4892
container_issue 10
container_start_page 4883
container_title Analytical chemistry (Washington)
container_volume 86
creator de Boves Harrington, Peter
description A novel representation of chemical measurements has been devised for which the data are encoded as fuzzy grids instead of the standard convention as a vector. The fuzzy grid encoded data and data in the standard format were evaluated with soft independent modeling for class analogies (SIMCA). The fuzzy version of SIMCA is referred to as FIMCA. These two methods were compared with simulated and real data to characterize the advantages of the fuzzy grid encoding. For complex data, the FIMCA approach often achieves better results, and for simpler data sets the similar prediction results are obtained. The benefits of this approach are its simplicity, increase in rank of overdetermined data, and prevention of coincidental correlations with underdetermined data. This paper introduces the use of FIMCA as a method for untargeted (one-class classification) authentication of complex chemical profiles.
doi_str_mv 10.1021/ac5001543
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692312987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1526737287</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533</originalsourceid><addsrcrecordid>eNqF0UFLwzAUB_Agis7pwS8gARG2QzUvWZL2OMo2Bxte9FzSJB0dXTuT9bB9ejM3h-jBSx6EH__Hew-hOyBPQCg8K80JAT5gZ6gDnJJIxDE9Rx1CCIuoJOQKXXu_DAYIiEt0RQciGRDOOigdt7vdFk9cafCo1o2xBk9rY9c2PPUGz8NPVdYLXDQOp5XyHg9rVTWL0nrcG0_n6bB_gy4KVXl7e6xd9D4evaUv0ex1Mk2Hs0gxKTaRjIEz0DIXKmdGWp3oghRWA4iYSkpsUtBcJ4apGGysGBVcAeQDLo3NJWesi3qH3LVrPlrrN9mq9NpWlapt0_oMREIZ0CSW_1NOhWSSftGHX3TZtC7MuFcsbCwGKYLqH5R2jffOFtnalSvlthmQbH-E7HSEYO-PiW2-suYkv7cewOMBKO1_dPsT9AmBRYkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531108176</pqid></control><display><type>article</type><title>Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>de Boves Harrington, Peter</creator><creatorcontrib>de Boves Harrington, Peter</creatorcontrib><description>A novel representation of chemical measurements has been devised for which the data are encoded as fuzzy grids instead of the standard convention as a vector. The fuzzy grid encoded data and data in the standard format were evaluated with soft independent modeling for class analogies (SIMCA). The fuzzy version of SIMCA is referred to as FIMCA. These two methods were compared with simulated and real data to characterize the advantages of the fuzzy grid encoding. For complex data, the FIMCA approach often achieves better results, and for simpler data sets the similar prediction results are obtained. The benefits of this approach are its simplicity, increase in rank of overdetermined data, and prevention of coincidental correlations with underdetermined data. This paper introduces the use of FIMCA as a method for untargeted (one-class classification) authentication of complex chemical profiles.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac5001543</identifier><identifier>PMID: 24694053</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analogies ; Analytical chemistry ; Classification ; Comparative analysis ; Correlation analysis ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Mathematical analysis ; Measurement ; Vectors (mathematics)</subject><ispartof>Analytical chemistry (Washington), 2014-05, Vol.86 (10), p.4883-4892</ispartof><rights>Copyright American Chemical Society May 20, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533</citedby><cites>FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24694053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Boves Harrington, Peter</creatorcontrib><title>Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A novel representation of chemical measurements has been devised for which the data are encoded as fuzzy grids instead of the standard convention as a vector. The fuzzy grid encoded data and data in the standard format were evaluated with soft independent modeling for class analogies (SIMCA). The fuzzy version of SIMCA is referred to as FIMCA. These two methods were compared with simulated and real data to characterize the advantages of the fuzzy grid encoding. For complex data, the FIMCA approach often achieves better results, and for simpler data sets the similar prediction results are obtained. The benefits of this approach are its simplicity, increase in rank of overdetermined data, and prevention of coincidental correlations with underdetermined data. This paper introduces the use of FIMCA as a method for untargeted (one-class classification) authentication of complex chemical profiles.</description><subject>Analogies</subject><subject>Analytical chemistry</subject><subject>Classification</subject><subject>Comparative analysis</subject><subject>Correlation analysis</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Vectors (mathematics)</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0UFLwzAUB_Agis7pwS8gARG2QzUvWZL2OMo2Bxte9FzSJB0dXTuT9bB9ejM3h-jBSx6EH__Hew-hOyBPQCg8K80JAT5gZ6gDnJJIxDE9Rx1CCIuoJOQKXXu_DAYIiEt0RQciGRDOOigdt7vdFk9cafCo1o2xBk9rY9c2PPUGz8NPVdYLXDQOp5XyHg9rVTWL0nrcG0_n6bB_gy4KVXl7e6xd9D4evaUv0ex1Mk2Hs0gxKTaRjIEz0DIXKmdGWp3oghRWA4iYSkpsUtBcJ4apGGysGBVcAeQDLo3NJWesi3qH3LVrPlrrN9mq9NpWlapt0_oMREIZ0CSW_1NOhWSSftGHX3TZtC7MuFcsbCwGKYLqH5R2jffOFtnalSvlthmQbH-E7HSEYO-PiW2-suYkv7cewOMBKO1_dPsT9AmBRYkA</recordid><startdate>20140520</startdate><enddate>20140520</enddate><creator>de Boves Harrington, Peter</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140520</creationdate><title>Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)</title><author>de Boves Harrington, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analogies</topic><topic>Analytical chemistry</topic><topic>Classification</topic><topic>Comparative analysis</topic><topic>Correlation analysis</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Boves Harrington, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Boves Harrington, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2014-05-20</date><risdate>2014</risdate><volume>86</volume><issue>10</issue><spage>4883</spage><epage>4892</epage><pages>4883-4892</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A novel representation of chemical measurements has been devised for which the data are encoded as fuzzy grids instead of the standard convention as a vector. The fuzzy grid encoded data and data in the standard format were evaluated with soft independent modeling for class analogies (SIMCA). The fuzzy version of SIMCA is referred to as FIMCA. These two methods were compared with simulated and real data to characterize the advantages of the fuzzy grid encoding. For complex data, the FIMCA approach often achieves better results, and for simpler data sets the similar prediction results are obtained. The benefits of this approach are its simplicity, increase in rank of overdetermined data, and prevention of coincidental correlations with underdetermined data. This paper introduces the use of FIMCA as a method for untargeted (one-class classification) authentication of complex chemical profiles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24694053</pmid><doi>10.1021/ac5001543</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2014-05, Vol.86 (10), p.4883-4892
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1692312987
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Analogies
Analytical chemistry
Classification
Comparative analysis
Correlation analysis
Fuzzy
Fuzzy logic
Fuzzy set theory
Mathematical analysis
Measurement
Vectors (mathematics)
title Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Grid%20Encoded%20Independent%20Modeling%20for%20Class%20Analogies%20(FIMCA)&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=de%20Boves%20Harrington,%20Peter&rft.date=2014-05-20&rft.volume=86&rft.issue=10&rft.spage=4883&rft.epage=4892&rft.pages=4883-4892&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac5001543&rft_dat=%3Cproquest_cross%3E1526737287%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531108176&rft_id=info:pmid/24694053&rfr_iscdi=true