Loading…
Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)
A novel representation of chemical measurements has been devised for which the data are encoded as fuzzy grids instead of the standard convention as a vector. The fuzzy grid encoded data and data in the standard format were evaluated with soft independent modeling for class analogies (SIMCA). The fu...
Saved in:
Published in: | Analytical chemistry (Washington) 2014-05, Vol.86 (10), p.4883-4892 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533 |
---|---|
cites | cdi_FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533 |
container_end_page | 4892 |
container_issue | 10 |
container_start_page | 4883 |
container_title | Analytical chemistry (Washington) |
container_volume | 86 |
creator | de Boves Harrington, Peter |
description | A novel representation of chemical measurements has been devised for which the data are encoded as fuzzy grids instead of the standard convention as a vector. The fuzzy grid encoded data and data in the standard format were evaluated with soft independent modeling for class analogies (SIMCA). The fuzzy version of SIMCA is referred to as FIMCA. These two methods were compared with simulated and real data to characterize the advantages of the fuzzy grid encoding. For complex data, the FIMCA approach often achieves better results, and for simpler data sets the similar prediction results are obtained. The benefits of this approach are its simplicity, increase in rank of overdetermined data, and prevention of coincidental correlations with underdetermined data. This paper introduces the use of FIMCA as a method for untargeted (one-class classification) authentication of complex chemical profiles. |
doi_str_mv | 10.1021/ac5001543 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692312987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1526737287</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533</originalsourceid><addsrcrecordid>eNqF0UFLwzAUB_Agis7pwS8gARG2QzUvWZL2OMo2Bxte9FzSJB0dXTuT9bB9ejM3h-jBSx6EH__Hew-hOyBPQCg8K80JAT5gZ6gDnJJIxDE9Rx1CCIuoJOQKXXu_DAYIiEt0RQciGRDOOigdt7vdFk9cafCo1o2xBk9rY9c2PPUGz8NPVdYLXDQOp5XyHg9rVTWL0nrcG0_n6bB_gy4KVXl7e6xd9D4evaUv0ex1Mk2Hs0gxKTaRjIEz0DIXKmdGWp3oghRWA4iYSkpsUtBcJ4apGGysGBVcAeQDLo3NJWesi3qH3LVrPlrrN9mq9NpWlapt0_oMREIZ0CSW_1NOhWSSftGHX3TZtC7MuFcsbCwGKYLqH5R2jffOFtnalSvlthmQbH-E7HSEYO-PiW2-suYkv7cewOMBKO1_dPsT9AmBRYkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531108176</pqid></control><display><type>article</type><title>Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>de Boves Harrington, Peter</creator><creatorcontrib>de Boves Harrington, Peter</creatorcontrib><description>A novel representation of chemical measurements has been devised for which the data are encoded as fuzzy grids instead of the standard convention as a vector. The fuzzy grid encoded data and data in the standard format were evaluated with soft independent modeling for class analogies (SIMCA). The fuzzy version of SIMCA is referred to as FIMCA. These two methods were compared with simulated and real data to characterize the advantages of the fuzzy grid encoding. For complex data, the FIMCA approach often achieves better results, and for simpler data sets the similar prediction results are obtained. The benefits of this approach are its simplicity, increase in rank of overdetermined data, and prevention of coincidental correlations with underdetermined data. This paper introduces the use of FIMCA as a method for untargeted (one-class classification) authentication of complex chemical profiles.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac5001543</identifier><identifier>PMID: 24694053</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analogies ; Analytical chemistry ; Classification ; Comparative analysis ; Correlation analysis ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Mathematical analysis ; Measurement ; Vectors (mathematics)</subject><ispartof>Analytical chemistry (Washington), 2014-05, Vol.86 (10), p.4883-4892</ispartof><rights>Copyright American Chemical Society May 20, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533</citedby><cites>FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24694053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Boves Harrington, Peter</creatorcontrib><title>Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A novel representation of chemical measurements has been devised for which the data are encoded as fuzzy grids instead of the standard convention as a vector. The fuzzy grid encoded data and data in the standard format were evaluated with soft independent modeling for class analogies (SIMCA). The fuzzy version of SIMCA is referred to as FIMCA. These two methods were compared with simulated and real data to characterize the advantages of the fuzzy grid encoding. For complex data, the FIMCA approach often achieves better results, and for simpler data sets the similar prediction results are obtained. The benefits of this approach are its simplicity, increase in rank of overdetermined data, and prevention of coincidental correlations with underdetermined data. This paper introduces the use of FIMCA as a method for untargeted (one-class classification) authentication of complex chemical profiles.</description><subject>Analogies</subject><subject>Analytical chemistry</subject><subject>Classification</subject><subject>Comparative analysis</subject><subject>Correlation analysis</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Vectors (mathematics)</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0UFLwzAUB_Agis7pwS8gARG2QzUvWZL2OMo2Bxte9FzSJB0dXTuT9bB9ejM3h-jBSx6EH__Hew-hOyBPQCg8K80JAT5gZ6gDnJJIxDE9Rx1CCIuoJOQKXXu_DAYIiEt0RQciGRDOOigdt7vdFk9cafCo1o2xBk9rY9c2PPUGz8NPVdYLXDQOp5XyHg9rVTWL0nrcG0_n6bB_gy4KVXl7e6xd9D4evaUv0ex1Mk2Hs0gxKTaRjIEz0DIXKmdGWp3oghRWA4iYSkpsUtBcJ4apGGysGBVcAeQDLo3NJWesi3qH3LVrPlrrN9mq9NpWlapt0_oMREIZ0CSW_1NOhWSSftGHX3TZtC7MuFcsbCwGKYLqH5R2jffOFtnalSvlthmQbH-E7HSEYO-PiW2-suYkv7cewOMBKO1_dPsT9AmBRYkA</recordid><startdate>20140520</startdate><enddate>20140520</enddate><creator>de Boves Harrington, Peter</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140520</creationdate><title>Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)</title><author>de Boves Harrington, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analogies</topic><topic>Analytical chemistry</topic><topic>Classification</topic><topic>Comparative analysis</topic><topic>Correlation analysis</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Boves Harrington, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Boves Harrington, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA)</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2014-05-20</date><risdate>2014</risdate><volume>86</volume><issue>10</issue><spage>4883</spage><epage>4892</epage><pages>4883-4892</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A novel representation of chemical measurements has been devised for which the data are encoded as fuzzy grids instead of the standard convention as a vector. The fuzzy grid encoded data and data in the standard format were evaluated with soft independent modeling for class analogies (SIMCA). The fuzzy version of SIMCA is referred to as FIMCA. These two methods were compared with simulated and real data to characterize the advantages of the fuzzy grid encoding. For complex data, the FIMCA approach often achieves better results, and for simpler data sets the similar prediction results are obtained. The benefits of this approach are its simplicity, increase in rank of overdetermined data, and prevention of coincidental correlations with underdetermined data. This paper introduces the use of FIMCA as a method for untargeted (one-class classification) authentication of complex chemical profiles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24694053</pmid><doi>10.1021/ac5001543</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2014-05, Vol.86 (10), p.4883-4892 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692312987 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Analogies Analytical chemistry Classification Comparative analysis Correlation analysis Fuzzy Fuzzy logic Fuzzy set theory Mathematical analysis Measurement Vectors (mathematics) |
title | Fuzzy Grid Encoded Independent Modeling for Class Analogies (FIMCA) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Grid%20Encoded%20Independent%20Modeling%20for%20Class%20Analogies%20(FIMCA)&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=de%20Boves%20Harrington,%20Peter&rft.date=2014-05-20&rft.volume=86&rft.issue=10&rft.spage=4883&rft.epage=4892&rft.pages=4883-4892&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac5001543&rft_dat=%3Cproquest_cross%3E1526737287%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a376t-781531c7b6ab3d7ec9cf0fec11682720e9f2bc9d3a81e8a3265a11b457deb7533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531108176&rft_id=info:pmid/24694053&rfr_iscdi=true |