Loading…

Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings

Ni–P–SiC nanocomposite coatings were successfully deposited onto mild steel substrates. The coating process was performed by sealing the specimens in an evacuated tempered glass tube and heated at various temperatures of 200°C for 2h, 400°C for 1h, and 600°C for 10min. The effect of heat treatment o...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2014-08, Vol.40 (7), p.9279-9284
Main Authors: Ma, Chunyang, Wu, Feifei, Ning, Yumei, Xia, Fafeng, Liu, Yongfu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3
cites cdi_FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3
container_end_page 9284
container_issue 7
container_start_page 9279
container_title Ceramics international
container_volume 40
creator Ma, Chunyang
Wu, Feifei
Ning, Yumei
Xia, Fafeng
Liu, Yongfu
description Ni–P–SiC nanocomposite coatings were successfully deposited onto mild steel substrates. The coating process was performed by sealing the specimens in an evacuated tempered glass tube and heated at various temperatures of 200°C for 2h, 400°C for 1h, and 600°C for 10min. The effect of heat treatment on the structures and corrosion characteristics of the electroless Ni–P–SiC nanocomposite coatings was investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), Vickers hardness, cyclic polarization, and electrochemical impedance spectroscopy (EIS) analyses. AFM and XRD results indicate that the optimum grain diameters of Ni and SiC in the as-plated Ni–P–SiC nanocomposite coatings are approximately 96.8 and 49.1nm, respectively. The maximum microhardness for the as-plated Ni–P–SiC nanocomposite coatings is 968.3HV. The highest microhardness is achieved for the samples heat treated at 600°C for 10min because of the precipitation of NixPy phases and the formation of an inter-diffusional layer at the substrate-coating interface. The lowest corrosion current density value is obtained for the coatings heat treated at 400°C for 1h. EIS data confirm these results.
doi_str_mv 10.1016/j.ceramint.2014.01.150
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692319503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272884214001771</els_id><sourcerecordid>1692319503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3</originalsourceid><addsrcrecordid>eNqFkU1uFDEQha2ISBkSroB6yaY7ZbvdPzvQKCRIEUQC1panukw86rYH20PELnfIDXOSeDSwzsJlyfW-J_k9xt5zaDjw7nLbIEWzOJ8bAbxtgDdcwQlb8aGXtRxV94atQPSiHoZWnLG3KW2hgGMLK_ZwZS1hroKt7snkKscyF_LlxVcpxz3mfaRUGT9VGGIMyZUF3ptoMFN0KTtMB5rmYhPDTClVX93z49NdOd_duvLGBwzLrpCZiofJzv9KF-zUmjnRu3_3Ofv5-erH-qa-_Xb9Zf3ptkbZD7lWqpMbMAJHArQTcjAKYOh7O6p2HHtOZrK8M8a0Aod2GEgiqs1Gta1QGzvJc_bh6LuL4feeUtaLS0jzbDyFfdIlBiH5qEC-LlVdz4WQXVek3VGKJZAUyepddIuJfzUHfShFb_X_UvShFA288FDAj0eQyp__OIo6oSOPNLlY8tNTcK9ZvAAwXp11</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567122366</pqid></control><display><type>article</type><title>Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings</title><source>ScienceDirect Freedom Collection</source><creator>Ma, Chunyang ; Wu, Feifei ; Ning, Yumei ; Xia, Fafeng ; Liu, Yongfu</creator><creatorcontrib>Ma, Chunyang ; Wu, Feifei ; Ning, Yumei ; Xia, Fafeng ; Liu, Yongfu</creatorcontrib><description>Ni–P–SiC nanocomposite coatings were successfully deposited onto mild steel substrates. The coating process was performed by sealing the specimens in an evacuated tempered glass tube and heated at various temperatures of 200°C for 2h, 400°C for 1h, and 600°C for 10min. The effect of heat treatment on the structures and corrosion characteristics of the electroless Ni–P–SiC nanocomposite coatings was investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), Vickers hardness, cyclic polarization, and electrochemical impedance spectroscopy (EIS) analyses. AFM and XRD results indicate that the optimum grain diameters of Ni and SiC in the as-plated Ni–P–SiC nanocomposite coatings are approximately 96.8 and 49.1nm, respectively. The maximum microhardness for the as-plated Ni–P–SiC nanocomposite coatings is 968.3HV. The highest microhardness is achieved for the samples heat treated at 600°C for 10min because of the precipitation of NixPy phases and the formation of an inter-diffusional layer at the substrate-coating interface. The lowest corrosion current density value is obtained for the coatings heat treated at 400°C for 1h. EIS data confirm these results.</description><identifier>ISSN: 0272-8842</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2014.01.150</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>C. Corrosion ; Coatings ; Corrosion ; Electrochemical impedance spectroscopy ; Heat treatment ; Microhardness ; Nanostructure ; Nickel ; Ni–P–SiC ; Silicon carbide</subject><ispartof>Ceramics international, 2014-08, Vol.40 (7), p.9279-9284</ispartof><rights>2014 Elsevier Ltd and Techna Group S.r.l.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3</citedby><cites>FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ma, Chunyang</creatorcontrib><creatorcontrib>Wu, Feifei</creatorcontrib><creatorcontrib>Ning, Yumei</creatorcontrib><creatorcontrib>Xia, Fafeng</creatorcontrib><creatorcontrib>Liu, Yongfu</creatorcontrib><title>Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings</title><title>Ceramics international</title><description>Ni–P–SiC nanocomposite coatings were successfully deposited onto mild steel substrates. The coating process was performed by sealing the specimens in an evacuated tempered glass tube and heated at various temperatures of 200°C for 2h, 400°C for 1h, and 600°C for 10min. The effect of heat treatment on the structures and corrosion characteristics of the electroless Ni–P–SiC nanocomposite coatings was investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), Vickers hardness, cyclic polarization, and electrochemical impedance spectroscopy (EIS) analyses. AFM and XRD results indicate that the optimum grain diameters of Ni and SiC in the as-plated Ni–P–SiC nanocomposite coatings are approximately 96.8 and 49.1nm, respectively. The maximum microhardness for the as-plated Ni–P–SiC nanocomposite coatings is 968.3HV. The highest microhardness is achieved for the samples heat treated at 600°C for 10min because of the precipitation of NixPy phases and the formation of an inter-diffusional layer at the substrate-coating interface. The lowest corrosion current density value is obtained for the coatings heat treated at 400°C for 1h. EIS data confirm these results.</description><subject>C. Corrosion</subject><subject>Coatings</subject><subject>Corrosion</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Heat treatment</subject><subject>Microhardness</subject><subject>Nanostructure</subject><subject>Nickel</subject><subject>Ni–P–SiC</subject><subject>Silicon carbide</subject><issn>0272-8842</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQha2ISBkSroB6yaY7ZbvdPzvQKCRIEUQC1panukw86rYH20PELnfIDXOSeDSwzsJlyfW-J_k9xt5zaDjw7nLbIEWzOJ8bAbxtgDdcwQlb8aGXtRxV94atQPSiHoZWnLG3KW2hgGMLK_ZwZS1hroKt7snkKscyF_LlxVcpxz3mfaRUGT9VGGIMyZUF3ptoMFN0KTtMB5rmYhPDTClVX93z49NdOd_duvLGBwzLrpCZiofJzv9KF-zUmjnRu3_3Ofv5-erH-qa-_Xb9Zf3ptkbZD7lWqpMbMAJHArQTcjAKYOh7O6p2HHtOZrK8M8a0Aod2GEgiqs1Gta1QGzvJc_bh6LuL4feeUtaLS0jzbDyFfdIlBiH5qEC-LlVdz4WQXVek3VGKJZAUyepddIuJfzUHfShFb_X_UvShFA288FDAj0eQyp__OIo6oSOPNLlY8tNTcK9ZvAAwXp11</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Ma, Chunyang</creator><creator>Wu, Feifei</creator><creator>Ning, Yumei</creator><creator>Xia, Fafeng</creator><creator>Liu, Yongfu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings</title><author>Ma, Chunyang ; Wu, Feifei ; Ning, Yumei ; Xia, Fafeng ; Liu, Yongfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>C. Corrosion</topic><topic>Coatings</topic><topic>Corrosion</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Heat treatment</topic><topic>Microhardness</topic><topic>Nanostructure</topic><topic>Nickel</topic><topic>Ni–P–SiC</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Chunyang</creatorcontrib><creatorcontrib>Wu, Feifei</creatorcontrib><creatorcontrib>Ning, Yumei</creatorcontrib><creatorcontrib>Xia, Fafeng</creatorcontrib><creatorcontrib>Liu, Yongfu</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Chunyang</au><au>Wu, Feifei</au><au>Ning, Yumei</au><au>Xia, Fafeng</au><au>Liu, Yongfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings</atitle><jtitle>Ceramics international</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>40</volume><issue>7</issue><spage>9279</spage><epage>9284</epage><pages>9279-9284</pages><issn>0272-8842</issn><eissn>1873-3956</eissn><abstract>Ni–P–SiC nanocomposite coatings were successfully deposited onto mild steel substrates. The coating process was performed by sealing the specimens in an evacuated tempered glass tube and heated at various temperatures of 200°C for 2h, 400°C for 1h, and 600°C for 10min. The effect of heat treatment on the structures and corrosion characteristics of the electroless Ni–P–SiC nanocomposite coatings was investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), Vickers hardness, cyclic polarization, and electrochemical impedance spectroscopy (EIS) analyses. AFM and XRD results indicate that the optimum grain diameters of Ni and SiC in the as-plated Ni–P–SiC nanocomposite coatings are approximately 96.8 and 49.1nm, respectively. The maximum microhardness for the as-plated Ni–P–SiC nanocomposite coatings is 968.3HV. The highest microhardness is achieved for the samples heat treated at 600°C for 10min because of the precipitation of NixPy phases and the formation of an inter-diffusional layer at the substrate-coating interface. The lowest corrosion current density value is obtained for the coatings heat treated at 400°C for 1h. EIS data confirm these results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ceramint.2014.01.150</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-8842
ispartof Ceramics international, 2014-08, Vol.40 (7), p.9279-9284
issn 0272-8842
1873-3956
language eng
recordid cdi_proquest_miscellaneous_1692319503
source ScienceDirect Freedom Collection
subjects C. Corrosion
Coatings
Corrosion
Electrochemical impedance spectroscopy
Heat treatment
Microhardness
Nanostructure
Nickel
Ni–P–SiC
Silicon carbide
title Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20heat%20treatment%20on%20structures%20and%20corrosion%20characteristics%20of%20electroless%20Ni%E2%80%93P%E2%80%93SiC%20nanocomposite%20coatings&rft.jtitle=Ceramics%20international&rft.au=Ma,%20Chunyang&rft.date=2014-08-01&rft.volume=40&rft.issue=7&rft.spage=9279&rft.epage=9284&rft.pages=9279-9284&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2014.01.150&rft_dat=%3Cproquest_cross%3E1692319503%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567122366&rft_id=info:pmid/&rfr_iscdi=true