Loading…
Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings
Ni–P–SiC nanocomposite coatings were successfully deposited onto mild steel substrates. The coating process was performed by sealing the specimens in an evacuated tempered glass tube and heated at various temperatures of 200°C for 2h, 400°C for 1h, and 600°C for 10min. The effect of heat treatment o...
Saved in:
Published in: | Ceramics international 2014-08, Vol.40 (7), p.9279-9284 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3 |
container_end_page | 9284 |
container_issue | 7 |
container_start_page | 9279 |
container_title | Ceramics international |
container_volume | 40 |
creator | Ma, Chunyang Wu, Feifei Ning, Yumei Xia, Fafeng Liu, Yongfu |
description | Ni–P–SiC nanocomposite coatings were successfully deposited onto mild steel substrates. The coating process was performed by sealing the specimens in an evacuated tempered glass tube and heated at various temperatures of 200°C for 2h, 400°C for 1h, and 600°C for 10min. The effect of heat treatment on the structures and corrosion characteristics of the electroless Ni–P–SiC nanocomposite coatings was investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), Vickers hardness, cyclic polarization, and electrochemical impedance spectroscopy (EIS) analyses. AFM and XRD results indicate that the optimum grain diameters of Ni and SiC in the as-plated Ni–P–SiC nanocomposite coatings are approximately 96.8 and 49.1nm, respectively. The maximum microhardness for the as-plated Ni–P–SiC nanocomposite coatings is 968.3HV. The highest microhardness is achieved for the samples heat treated at 600°C for 10min because of the precipitation of NixPy phases and the formation of an inter-diffusional layer at the substrate-coating interface. The lowest corrosion current density value is obtained for the coatings heat treated at 400°C for 1h. EIS data confirm these results. |
doi_str_mv | 10.1016/j.ceramint.2014.01.150 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692319503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272884214001771</els_id><sourcerecordid>1692319503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3</originalsourceid><addsrcrecordid>eNqFkU1uFDEQha2ISBkSroB6yaY7ZbvdPzvQKCRIEUQC1panukw86rYH20PELnfIDXOSeDSwzsJlyfW-J_k9xt5zaDjw7nLbIEWzOJ8bAbxtgDdcwQlb8aGXtRxV94atQPSiHoZWnLG3KW2hgGMLK_ZwZS1hroKt7snkKscyF_LlxVcpxz3mfaRUGT9VGGIMyZUF3ptoMFN0KTtMB5rmYhPDTClVX93z49NdOd_duvLGBwzLrpCZiofJzv9KF-zUmjnRu3_3Ofv5-erH-qa-_Xb9Zf3ptkbZD7lWqpMbMAJHArQTcjAKYOh7O6p2HHtOZrK8M8a0Aod2GEgiqs1Gta1QGzvJc_bh6LuL4feeUtaLS0jzbDyFfdIlBiH5qEC-LlVdz4WQXVek3VGKJZAUyepddIuJfzUHfShFb_X_UvShFA288FDAj0eQyp__OIo6oSOPNLlY8tNTcK9ZvAAwXp11</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567122366</pqid></control><display><type>article</type><title>Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings</title><source>ScienceDirect Freedom Collection</source><creator>Ma, Chunyang ; Wu, Feifei ; Ning, Yumei ; Xia, Fafeng ; Liu, Yongfu</creator><creatorcontrib>Ma, Chunyang ; Wu, Feifei ; Ning, Yumei ; Xia, Fafeng ; Liu, Yongfu</creatorcontrib><description>Ni–P–SiC nanocomposite coatings were successfully deposited onto mild steel substrates. The coating process was performed by sealing the specimens in an evacuated tempered glass tube and heated at various temperatures of 200°C for 2h, 400°C for 1h, and 600°C for 10min. The effect of heat treatment on the structures and corrosion characteristics of the electroless Ni–P–SiC nanocomposite coatings was investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), Vickers hardness, cyclic polarization, and electrochemical impedance spectroscopy (EIS) analyses. AFM and XRD results indicate that the optimum grain diameters of Ni and SiC in the as-plated Ni–P–SiC nanocomposite coatings are approximately 96.8 and 49.1nm, respectively. The maximum microhardness for the as-plated Ni–P–SiC nanocomposite coatings is 968.3HV. The highest microhardness is achieved for the samples heat treated at 600°C for 10min because of the precipitation of NixPy phases and the formation of an inter-diffusional layer at the substrate-coating interface. The lowest corrosion current density value is obtained for the coatings heat treated at 400°C for 1h. EIS data confirm these results.</description><identifier>ISSN: 0272-8842</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2014.01.150</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>C. Corrosion ; Coatings ; Corrosion ; Electrochemical impedance spectroscopy ; Heat treatment ; Microhardness ; Nanostructure ; Nickel ; Ni–P–SiC ; Silicon carbide</subject><ispartof>Ceramics international, 2014-08, Vol.40 (7), p.9279-9284</ispartof><rights>2014 Elsevier Ltd and Techna Group S.r.l.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3</citedby><cites>FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ma, Chunyang</creatorcontrib><creatorcontrib>Wu, Feifei</creatorcontrib><creatorcontrib>Ning, Yumei</creatorcontrib><creatorcontrib>Xia, Fafeng</creatorcontrib><creatorcontrib>Liu, Yongfu</creatorcontrib><title>Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings</title><title>Ceramics international</title><description>Ni–P–SiC nanocomposite coatings were successfully deposited onto mild steel substrates. The coating process was performed by sealing the specimens in an evacuated tempered glass tube and heated at various temperatures of 200°C for 2h, 400°C for 1h, and 600°C for 10min. The effect of heat treatment on the structures and corrosion characteristics of the electroless Ni–P–SiC nanocomposite coatings was investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), Vickers hardness, cyclic polarization, and electrochemical impedance spectroscopy (EIS) analyses. AFM and XRD results indicate that the optimum grain diameters of Ni and SiC in the as-plated Ni–P–SiC nanocomposite coatings are approximately 96.8 and 49.1nm, respectively. The maximum microhardness for the as-plated Ni–P–SiC nanocomposite coatings is 968.3HV. The highest microhardness is achieved for the samples heat treated at 600°C for 10min because of the precipitation of NixPy phases and the formation of an inter-diffusional layer at the substrate-coating interface. The lowest corrosion current density value is obtained for the coatings heat treated at 400°C for 1h. EIS data confirm these results.</description><subject>C. Corrosion</subject><subject>Coatings</subject><subject>Corrosion</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Heat treatment</subject><subject>Microhardness</subject><subject>Nanostructure</subject><subject>Nickel</subject><subject>Ni–P–SiC</subject><subject>Silicon carbide</subject><issn>0272-8842</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQha2ISBkSroB6yaY7ZbvdPzvQKCRIEUQC1panukw86rYH20PELnfIDXOSeDSwzsJlyfW-J_k9xt5zaDjw7nLbIEWzOJ8bAbxtgDdcwQlb8aGXtRxV94atQPSiHoZWnLG3KW2hgGMLK_ZwZS1hroKt7snkKscyF_LlxVcpxz3mfaRUGT9VGGIMyZUF3ptoMFN0KTtMB5rmYhPDTClVX93z49NdOd_duvLGBwzLrpCZiofJzv9KF-zUmjnRu3_3Ofv5-erH-qa-_Xb9Zf3ptkbZD7lWqpMbMAJHArQTcjAKYOh7O6p2HHtOZrK8M8a0Aod2GEgiqs1Gta1QGzvJc_bh6LuL4feeUtaLS0jzbDyFfdIlBiH5qEC-LlVdz4WQXVek3VGKJZAUyepddIuJfzUHfShFb_X_UvShFA288FDAj0eQyp__OIo6oSOPNLlY8tNTcK9ZvAAwXp11</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Ma, Chunyang</creator><creator>Wu, Feifei</creator><creator>Ning, Yumei</creator><creator>Xia, Fafeng</creator><creator>Liu, Yongfu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings</title><author>Ma, Chunyang ; Wu, Feifei ; Ning, Yumei ; Xia, Fafeng ; Liu, Yongfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>C. Corrosion</topic><topic>Coatings</topic><topic>Corrosion</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Heat treatment</topic><topic>Microhardness</topic><topic>Nanostructure</topic><topic>Nickel</topic><topic>Ni–P–SiC</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Chunyang</creatorcontrib><creatorcontrib>Wu, Feifei</creatorcontrib><creatorcontrib>Ning, Yumei</creatorcontrib><creatorcontrib>Xia, Fafeng</creatorcontrib><creatorcontrib>Liu, Yongfu</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Chunyang</au><au>Wu, Feifei</au><au>Ning, Yumei</au><au>Xia, Fafeng</au><au>Liu, Yongfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings</atitle><jtitle>Ceramics international</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>40</volume><issue>7</issue><spage>9279</spage><epage>9284</epage><pages>9279-9284</pages><issn>0272-8842</issn><eissn>1873-3956</eissn><abstract>Ni–P–SiC nanocomposite coatings were successfully deposited onto mild steel substrates. The coating process was performed by sealing the specimens in an evacuated tempered glass tube and heated at various temperatures of 200°C for 2h, 400°C for 1h, and 600°C for 10min. The effect of heat treatment on the structures and corrosion characteristics of the electroless Ni–P–SiC nanocomposite coatings was investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), Vickers hardness, cyclic polarization, and electrochemical impedance spectroscopy (EIS) analyses. AFM and XRD results indicate that the optimum grain diameters of Ni and SiC in the as-plated Ni–P–SiC nanocomposite coatings are approximately 96.8 and 49.1nm, respectively. The maximum microhardness for the as-plated Ni–P–SiC nanocomposite coatings is 968.3HV. The highest microhardness is achieved for the samples heat treated at 600°C for 10min because of the precipitation of NixPy phases and the formation of an inter-diffusional layer at the substrate-coating interface. The lowest corrosion current density value is obtained for the coatings heat treated at 400°C for 1h. EIS data confirm these results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ceramint.2014.01.150</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8842 |
ispartof | Ceramics international, 2014-08, Vol.40 (7), p.9279-9284 |
issn | 0272-8842 1873-3956 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692319503 |
source | ScienceDirect Freedom Collection |
subjects | C. Corrosion Coatings Corrosion Electrochemical impedance spectroscopy Heat treatment Microhardness Nanostructure Nickel Ni–P–SiC Silicon carbide |
title | Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20heat%20treatment%20on%20structures%20and%20corrosion%20characteristics%20of%20electroless%20Ni%E2%80%93P%E2%80%93SiC%20nanocomposite%20coatings&rft.jtitle=Ceramics%20international&rft.au=Ma,%20Chunyang&rft.date=2014-08-01&rft.volume=40&rft.issue=7&rft.spage=9279&rft.epage=9284&rft.pages=9279-9284&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2014.01.150&rft_dat=%3Cproquest_cross%3E1692319503%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-5563b0a2c9e0cfdc10a500877f9549971eadf16aaa42c8488e3cc5bb54425bfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567122366&rft_id=info:pmid/&rfr_iscdi=true |