Loading…

Enhanced Heat Transfer and Fluid Flow in a Channel Behind a Photovoltaic Panel in a Hybrid Photovoltaic/Thermal System

Thermal large eddy simulation (TLES) of air flow in a simple channel is being carried out to understand the insight physics and possibility of enhancing heat transfer in a photovoltaic/thermal system. A photovoltaic panel operating at higher temperature loses its efficiency; to alleviate this situat...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2013-12, Vol.52 (51), p.18413-18420
Main Authors: Yahya, Syed Mohd, Anwer, Syed Fahad, Sanghi, Sanjeev
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermal large eddy simulation (TLES) of air flow in a simple channel is being carried out to understand the insight physics and possibility of enhancing heat transfer in a photovoltaic/thermal system. A photovoltaic panel operating at higher temperature loses its efficiency; to alleviate this situation, a simple channel configuration at the rear of the panel is used to extract maximum heat and keep the electrical efficiency in permissible limits. Forced convection of air is being simulated with different complex internal geometries in a biperiodic channel using a low Mach number approach aiming at enhanced turbulence mixing. Detailed studies of the flow and thermal fields of the air are presented in order to explore the thermal behavior of the air in the channel. Comparison with an empty channel and a classical channel with fins and internal innovative structures are carried out for choosing a suitable configuration for better performance. It has been observed that artificial hindrances in the form of fins and DWVGs (delta-winglet vortex generators) inside the channel is one effective way of improving heat extraction from the channel.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie402460n