Loading…

Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: An in vitro investigation

The physical, chemical and biological properties of the bioglass reinforced yttria-stabilized composite layer on Ti6Al4V titanium substrates were investigated. The Ti6Al4V substrate was deposited with yttria stabilized zirconia — YSZ as the base layer of thickness ≈4–5μm, to inhibit metal ion leach...

Full description

Saved in:
Bibliographic Details
Published in:Materials Science & Engineering C 2013-10, Vol.33 (7), p.4160-4166
Main Authors: Ananth, K. Prem, Suganya, S., Mangalaraj, D., Ferreira, J.M.F., A.Balamurugan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The physical, chemical and biological properties of the bioglass reinforced yttria-stabilized composite layer on Ti6Al4V titanium substrates were investigated. The Ti6Al4V substrate was deposited with yttria stabilized zirconia — YSZ as the base layer of thickness ≈4–5μm, to inhibit metal ion leach out from the substrate and bioglass zirconia reinforced composite as the second layer of thickness ≈15μm, which would react with surrounding bone tissue to enhance bone formation and implant fixation. The deposition of these two layers on the substrate was carried out using the most viable electrophoretic deposition (EPD) technique. Biocompatible yttria-stabilized zirconia (YSZ) in the form of nano-particles and sol gel derived bioglass in the form of micro-particles were chosen as precursors for coating. The coatings were vacuum sintered at 900°C for 3h. The biocompatibility and corrosion resistance property were studied in osteoblast cell culture and in simulated body fluid (SBF) respectively. Analysis showed that the zirconia reinforced bioglass bilayer system promoted significant bioactivity, and it exhibited a better corrosion resistance property and elevated mechanical strength under load bearing conditions in comparison with the monolayer YSZ coating on Ti6Al4V implant surface. •To investigate the various properties of the reinforced bioglass systems•EPD technique used to prepare bilayer coating on implant•Enhanced bioactivity, corrosion resistance and mechanical strength observed•We opine that reinforced bioglass system can be better choice for implant applications.
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2013.06.010