Loading…

Image Segmentation Using Region-Based Latent Variables and Belief Propagation

We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variable...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Physical Society of Japan 2011-09, Vol.80 (9), p.1-1
Main Authors: Hasegawa, Ryota, Okada, Masato, Miyoshi, Seiji
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue 9
container_start_page 1
container_title Journal of the Physical Society of Japan
container_volume 80
creator Hasegawa, Ryota
Okada, Masato
Miyoshi, Seiji
description We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using artificial images and a natural image degraded by Gaussian noises, we show that the derived algorithm has the potential ability to restore and segment using a single noisy image.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692332050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3681528081</sourcerecordid><originalsourceid>FETCH-LOGICAL-p610-cd820b0a17a753e8930ab1c5e153ded7a0c08dca5623eea4a07a4f263d8f29fb3</originalsourceid><addsrcrecordid>eNpdkM1KxEAQhAdRMK6-w4AXL4Ge6UwmObqLPwsriq5el06mE7Ikk5hJ3t_gevJUFPVV09SZiBQmNk7A4rmIAFDFOShzKa5COAJoo3QSiZdtRzXLD6479hNNTe_lZ2h8Ld-5Xky8psBO7mhaYvlFY0NFy0GSd3LNbcOVfBv7gerf6rW4qKgNfPOnK7F_fNhvnuPd69N2c7-Lh1RBXLpMQwGkLFmDnOUIVKjSsDLo2FmCEjJXkkk1MlNCYCmpdIouq3ReFbgSd6ezw9h_zxymQ9eEktuWPPdzOKg014gaDCzo7T_02M-jX55bqAw06mUl_AFkllg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680232134</pqid></control><display><type>article</type><title>Image Segmentation Using Region-Based Latent Variables and Belief Propagation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hasegawa, Ryota ; Okada, Masato ; Miyoshi, Seiji</creator><creatorcontrib>Hasegawa, Ryota ; Okada, Masato ; Miyoshi, Seiji</creatorcontrib><description>We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using artificial images and a natural image degraded by Gaussian noises, we show that the derived algorithm has the potential ability to restore and segment using a single noisy image.</description><identifier>ISSN: 0031-9015</identifier><identifier>EISSN: 1347-4073</identifier><language>eng</language><publisher>Tokyo: The Physical Society of Japan</publisher><subject>Algorithms ; Bayesian analysis ; Gaussian ; Image restoration ; Image segmentation ; Magnetorheological fluids ; Mathematical models ; Normal distribution ; Parameter estimation ; Propagation ; Segments</subject><ispartof>Journal of the Physical Society of Japan, 2011-09, Vol.80 (9), p.1-1</ispartof><rights>Copyright The Physical Society of Japan Sep 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Hasegawa, Ryota</creatorcontrib><creatorcontrib>Okada, Masato</creatorcontrib><creatorcontrib>Miyoshi, Seiji</creatorcontrib><title>Image Segmentation Using Region-Based Latent Variables and Belief Propagation</title><title>Journal of the Physical Society of Japan</title><description>We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using artificial images and a natural image degraded by Gaussian noises, we show that the derived algorithm has the potential ability to restore and segment using a single noisy image.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Gaussian</subject><subject>Image restoration</subject><subject>Image segmentation</subject><subject>Magnetorheological fluids</subject><subject>Mathematical models</subject><subject>Normal distribution</subject><subject>Parameter estimation</subject><subject>Propagation</subject><subject>Segments</subject><issn>0031-9015</issn><issn>1347-4073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkM1KxEAQhAdRMK6-w4AXL4Ge6UwmObqLPwsriq5el06mE7Ikk5hJ3t_gevJUFPVV09SZiBQmNk7A4rmIAFDFOShzKa5COAJoo3QSiZdtRzXLD6479hNNTe_lZ2h8Ld-5Xky8psBO7mhaYvlFY0NFy0GSd3LNbcOVfBv7gerf6rW4qKgNfPOnK7F_fNhvnuPd69N2c7-Lh1RBXLpMQwGkLFmDnOUIVKjSsDLo2FmCEjJXkkk1MlNCYCmpdIouq3ReFbgSd6ezw9h_zxymQ9eEktuWPPdzOKg014gaDCzo7T_02M-jX55bqAw06mUl_AFkllg8</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Hasegawa, Ryota</creator><creator>Okada, Masato</creator><creator>Miyoshi, Seiji</creator><general>The Physical Society of Japan</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110901</creationdate><title>Image Segmentation Using Region-Based Latent Variables and Belief Propagation</title><author>Hasegawa, Ryota ; Okada, Masato ; Miyoshi, Seiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p610-cd820b0a17a753e8930ab1c5e153ded7a0c08dca5623eea4a07a4f263d8f29fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Gaussian</topic><topic>Image restoration</topic><topic>Image segmentation</topic><topic>Magnetorheological fluids</topic><topic>Mathematical models</topic><topic>Normal distribution</topic><topic>Parameter estimation</topic><topic>Propagation</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasegawa, Ryota</creatorcontrib><creatorcontrib>Okada, Masato</creatorcontrib><creatorcontrib>Miyoshi, Seiji</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Physical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasegawa, Ryota</au><au>Okada, Masato</au><au>Miyoshi, Seiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Segmentation Using Region-Based Latent Variables and Belief Propagation</atitle><jtitle>Journal of the Physical Society of Japan</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>80</volume><issue>9</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0031-9015</issn><eissn>1347-4073</eissn><abstract>We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using artificial images and a natural image degraded by Gaussian noises, we show that the derived algorithm has the potential ability to restore and segment using a single noisy image.</abstract><cop>Tokyo</cop><pub>The Physical Society of Japan</pub><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9015
ispartof Journal of the Physical Society of Japan, 2011-09, Vol.80 (9), p.1-1
issn 0031-9015
1347-4073
language eng
recordid cdi_proquest_miscellaneous_1692332050
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Bayesian analysis
Gaussian
Image restoration
Image segmentation
Magnetorheological fluids
Mathematical models
Normal distribution
Parameter estimation
Propagation
Segments
title Image Segmentation Using Region-Based Latent Variables and Belief Propagation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Segmentation%20Using%20Region-Based%20Latent%20Variables%20and%20Belief%20Propagation&rft.jtitle=Journal%20of%20the%20Physical%20Society%20of%20Japan&rft.au=Hasegawa,%20Ryota&rft.date=2011-09-01&rft.volume=80&rft.issue=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0031-9015&rft.eissn=1347-4073&rft_id=info:doi/&rft_dat=%3Cproquest%3E3681528081%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p610-cd820b0a17a753e8930ab1c5e153ded7a0c08dca5623eea4a07a4f263d8f29fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1680232134&rft_id=info:pmid/&rfr_iscdi=true