Loading…
Image Segmentation Using Region-Based Latent Variables and Belief Propagation
We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variable...
Saved in:
Published in: | Journal of the Physical Society of Japan 2011-09, Vol.80 (9), p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | 9 |
container_start_page | 1 |
container_title | Journal of the Physical Society of Japan |
container_volume | 80 |
creator | Hasegawa, Ryota Okada, Masato Miyoshi, Seiji |
description | We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using artificial images and a natural image degraded by Gaussian noises, we show that the derived algorithm has the potential ability to restore and segment using a single noisy image. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692332050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3681528081</sourcerecordid><originalsourceid>FETCH-LOGICAL-p610-cd820b0a17a753e8930ab1c5e153ded7a0c08dca5623eea4a07a4f263d8f29fb3</originalsourceid><addsrcrecordid>eNpdkM1KxEAQhAdRMK6-w4AXL4Ge6UwmObqLPwsriq5el06mE7Ikk5hJ3t_gevJUFPVV09SZiBQmNk7A4rmIAFDFOShzKa5COAJoo3QSiZdtRzXLD6479hNNTe_lZ2h8Ld-5Xky8psBO7mhaYvlFY0NFy0GSd3LNbcOVfBv7gerf6rW4qKgNfPOnK7F_fNhvnuPd69N2c7-Lh1RBXLpMQwGkLFmDnOUIVKjSsDLo2FmCEjJXkkk1MlNCYCmpdIouq3ReFbgSd6ezw9h_zxymQ9eEktuWPPdzOKg014gaDCzo7T_02M-jX55bqAw06mUl_AFkllg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680232134</pqid></control><display><type>article</type><title>Image Segmentation Using Region-Based Latent Variables and Belief Propagation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hasegawa, Ryota ; Okada, Masato ; Miyoshi, Seiji</creator><creatorcontrib>Hasegawa, Ryota ; Okada, Masato ; Miyoshi, Seiji</creatorcontrib><description>We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using artificial images and a natural image degraded by Gaussian noises, we show that the derived algorithm has the potential ability to restore and segment using a single noisy image.</description><identifier>ISSN: 0031-9015</identifier><identifier>EISSN: 1347-4073</identifier><language>eng</language><publisher>Tokyo: The Physical Society of Japan</publisher><subject>Algorithms ; Bayesian analysis ; Gaussian ; Image restoration ; Image segmentation ; Magnetorheological fluids ; Mathematical models ; Normal distribution ; Parameter estimation ; Propagation ; Segments</subject><ispartof>Journal of the Physical Society of Japan, 2011-09, Vol.80 (9), p.1-1</ispartof><rights>Copyright The Physical Society of Japan Sep 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Hasegawa, Ryota</creatorcontrib><creatorcontrib>Okada, Masato</creatorcontrib><creatorcontrib>Miyoshi, Seiji</creatorcontrib><title>Image Segmentation Using Region-Based Latent Variables and Belief Propagation</title><title>Journal of the Physical Society of Japan</title><description>We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using artificial images and a natural image degraded by Gaussian noises, we show that the derived algorithm has the potential ability to restore and segment using a single noisy image.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Gaussian</subject><subject>Image restoration</subject><subject>Image segmentation</subject><subject>Magnetorheological fluids</subject><subject>Mathematical models</subject><subject>Normal distribution</subject><subject>Parameter estimation</subject><subject>Propagation</subject><subject>Segments</subject><issn>0031-9015</issn><issn>1347-4073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkM1KxEAQhAdRMK6-w4AXL4Ge6UwmObqLPwsriq5el06mE7Ikk5hJ3t_gevJUFPVV09SZiBQmNk7A4rmIAFDFOShzKa5COAJoo3QSiZdtRzXLD6479hNNTe_lZ2h8Ld-5Xky8psBO7mhaYvlFY0NFy0GSd3LNbcOVfBv7gerf6rW4qKgNfPOnK7F_fNhvnuPd69N2c7-Lh1RBXLpMQwGkLFmDnOUIVKjSsDLo2FmCEjJXkkk1MlNCYCmpdIouq3ReFbgSd6ezw9h_zxymQ9eEktuWPPdzOKg014gaDCzo7T_02M-jX55bqAw06mUl_AFkllg8</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Hasegawa, Ryota</creator><creator>Okada, Masato</creator><creator>Miyoshi, Seiji</creator><general>The Physical Society of Japan</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110901</creationdate><title>Image Segmentation Using Region-Based Latent Variables and Belief Propagation</title><author>Hasegawa, Ryota ; Okada, Masato ; Miyoshi, Seiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p610-cd820b0a17a753e8930ab1c5e153ded7a0c08dca5623eea4a07a4f263d8f29fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Gaussian</topic><topic>Image restoration</topic><topic>Image segmentation</topic><topic>Magnetorheological fluids</topic><topic>Mathematical models</topic><topic>Normal distribution</topic><topic>Parameter estimation</topic><topic>Propagation</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasegawa, Ryota</creatorcontrib><creatorcontrib>Okada, Masato</creatorcontrib><creatorcontrib>Miyoshi, Seiji</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Physical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasegawa, Ryota</au><au>Okada, Masato</au><au>Miyoshi, Seiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Segmentation Using Region-Based Latent Variables and Belief Propagation</atitle><jtitle>Journal of the Physical Society of Japan</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>80</volume><issue>9</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0031-9015</issn><eissn>1347-4073</eissn><abstract>We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using artificial images and a natural image degraded by Gaussian noises, we show that the derived algorithm has the potential ability to restore and segment using a single noisy image.</abstract><cop>Tokyo</cop><pub>The Physical Society of Japan</pub><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9015 |
ispartof | Journal of the Physical Society of Japan, 2011-09, Vol.80 (9), p.1-1 |
issn | 0031-9015 1347-4073 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692332050 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Bayesian analysis Gaussian Image restoration Image segmentation Magnetorheological fluids Mathematical models Normal distribution Parameter estimation Propagation Segments |
title | Image Segmentation Using Region-Based Latent Variables and Belief Propagation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Segmentation%20Using%20Region-Based%20Latent%20Variables%20and%20Belief%20Propagation&rft.jtitle=Journal%20of%20the%20Physical%20Society%20of%20Japan&rft.au=Hasegawa,%20Ryota&rft.date=2011-09-01&rft.volume=80&rft.issue=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0031-9015&rft.eissn=1347-4073&rft_id=info:doi/&rft_dat=%3Cproquest%3E3681528081%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p610-cd820b0a17a753e8930ab1c5e153ded7a0c08dca5623eea4a07a4f263d8f29fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1680232134&rft_id=info:pmid/&rfr_iscdi=true |