Loading…

Controlling and Formation Mechanism of Oxygen-Containing Groups on Graphite Oxide

Controllable synthesis of graphite oxide (GO) for targeted surface properties is of great importance for its versatile applications. For this purpose, GO samples were prepared with different amounts of oxidant and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, 13C cross...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2014-01, Vol.53 (1), p.253-258
Main Authors: Liu, Zhiting, Duan, Xuezhi, Zhou, Xinggui, Qian, Gang, Zhou, Jinghong, Yuan, Weikang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Controllable synthesis of graphite oxide (GO) for targeted surface properties is of great importance for its versatile applications. For this purpose, GO samples were prepared with different amounts of oxidant and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, 13C cross-polarization with total sideband suppression magic-angle-spinning nuclear magnetic resonance, X-ray photoelectron spectroscopy, Raman spectroscopy, and ζ-potential measurement. When the oxidant amount is below a critical value, the epoxy groups are dominant on the GO surfaces, together with a few hydroxyl and carbonyl groups. Further increase in the oxidant amount leads to the formation and development of the carboxyl groups, which eventually reach a saturation level. Meanwhile, the increasing oxygen-containing groups introduce more defects and reduce the crystalline graphene domains on GO. A possible mechanism for the formation of the oxygen-containing groups on GO is proposed, providing a guideline for the manipulation of the GO surface properties.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie403088t