Loading…
3D Flow Reactors: Flow, Hydrodynamics, and Performance
A device comprised of a sequence of converging or diverging units aligned either in an axisymmetric or nonaxisymmetric manner can be used as a continuous flow reactor. Here we report the analysis of flow and hydrodynamics (pressure drop, residence time distribution, and mass transfer) for an axisymm...
Saved in:
Published in: | Industrial & engineering chemistry research 2014-02, Vol.53 (5), p.1916-1923 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A device comprised of a sequence of converging or diverging units aligned either in an axisymmetric or nonaxisymmetric manner can be used as a continuous flow reactor. Here we report the analysis of flow and hydrodynamics (pressure drop, residence time distribution, and mass transfer) for an axisymmetric geometry of a 3D flow reactor for single phase and two-phase flows. CFD simulations of the single phase flow have been used for identification of the precise geometrical configuration. The sequence of converging units as a flow reactor has been found to always be better than the sequence of diverging units. The residence time distribution analysis also favored the choice of converging flow as a better option. The performance of the device was verified by successfully carrying out a highly exothermic two-phase aromatic nitration of benzaldehyde (ΔH r ≈ −172 kJ/mol) with fuming nitric acid. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie402311y |