Loading…

Direct Combustion Synthesis of Silicon Carbide Nanopowder from the Elements

Direct synthesis of silicon carbide (SiC) nanopowders (size 50–200 nm, BET ~20 m2/g) in Si–C system is conducted in an inert atmosphere (argon) using a self‐propagating high‐temperature synthesis (SHS) approach. A preliminary short‐term (e.g., minutes) high‐energy ball milling (HEBM) of the initial...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2013-01, Vol.96 (1), p.111-117
Main Authors: Mukasyan, Alexander S., Lin, Ya-Cheng, Rogachev, Alexander S., Moskovskikh, Dmitry O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4387-6f3a7c1840dd252006c6ad0355c2a7b2dd577d54f034cc9b06bfafb8c69c25bf3
cites cdi_FETCH-LOGICAL-c4387-6f3a7c1840dd252006c6ad0355c2a7b2dd577d54f034cc9b06bfafb8c69c25bf3
container_end_page 117
container_issue 1
container_start_page 111
container_title Journal of the American Ceramic Society
container_volume 96
creator Mukasyan, Alexander S.
Lin, Ya-Cheng
Rogachev, Alexander S.
Moskovskikh, Dmitry O.
description Direct synthesis of silicon carbide (SiC) nanopowders (size 50–200 nm, BET ~20 m2/g) in Si–C system is conducted in an inert atmosphere (argon) using a self‐propagating high‐temperature synthesis (SHS) approach. A preliminary short‐term (e.g., minutes) high‐energy ball milling (HEBM) of the initial mixture, which involves pure Si and C powders, is used to enhance system reactivity. Two conditions of HEBM with different force fields (17G and 90G) are applied and the results are compared. The influence of HEBM's conditions on the microstructure of mechanically treated mixtures and combustion products is also investigated and discussed. Obtained results suggest that by changing the intensity of mechanical treatment one may prepare a completely amorphous reactive mixture containing carbon and silicon, or gradually change the ratio of (Si/C)–SiC phases and finally produce pure silicon carbide powder during the milling process. The influence of HEBM on the combustibility of the Si/C mixture possesses a critical character: the self‐sustained reaction becomes feasible only after a critical time of ball milling (i.e., 10 min for 90G; 30 min for 17G). Comparison of the microstructures for as‐milled and as‐synthesized powders reveals that for all investigated conditions the morphologies of the as‐milled reactive Si/C media are essentially the same as that for SiC combustion products. The mechanism for direct synthesis of SiC by combustion reaction is also proposed.
doi_str_mv 10.1111/jace.12107
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692344969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692344969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4387-6f3a7c1840dd252006c6ad0355c2a7b2dd577d54f034cc9b06bfafb8c69c25bf3</originalsourceid><addsrcrecordid>eNqN0U1P2zAYB3ALDYmOceETRNoFIQX8_nJkWWGwqhwK4mg5ji1ckrjYqVi__QKFHTgMfLFs_f6P9OgPwCGCJ2g8p0tj3QnCCIodMEGMoRIrxL-ACYQQl0JiuAe-5rwcn0hJOgG_f4bk7FBUsavXeQixLxabfrh3OeQi-mIR2mDHz8qkOjSumJs-ruJT41LhU-yKURbT1nWuH_I3sOtNm93B670Pbs-nN9WvcnZ9cVmdzUpLiRQl98QIiySFTYMZhpBbbhpIGLPYiBo3DROiYdRDQq1VNeS1N76WliuLWe3JPjjazl2l-Lh2edBdyNa1reldXGeNuMKEUsXVx5RggqmEWH6CIsapVAKP9Ps7uozr1I87a4S5EEpJSEd1vFU2xZyT83qVQmfSRiOon9vSz23pl7ZGjLb4KbRu8x-pr86q6Vum3GZCHtyffxmTHjQXRDB9N7_QC3Y1R7NzoX-QvwhIpCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267799804</pqid></control><display><type>article</type><title>Direct Combustion Synthesis of Silicon Carbide Nanopowder from the Elements</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mukasyan, Alexander S. ; Lin, Ya-Cheng ; Rogachev, Alexander S. ; Moskovskikh, Dmitry O.</creator><contributor>Cutler, R.</contributor><creatorcontrib>Mukasyan, Alexander S. ; Lin, Ya-Cheng ; Rogachev, Alexander S. ; Moskovskikh, Dmitry O. ; Cutler, R.</creatorcontrib><description>Direct synthesis of silicon carbide (SiC) nanopowders (size 50–200 nm, BET ~20 m2/g) in Si–C system is conducted in an inert atmosphere (argon) using a self‐propagating high‐temperature synthesis (SHS) approach. A preliminary short‐term (e.g., minutes) high‐energy ball milling (HEBM) of the initial mixture, which involves pure Si and C powders, is used to enhance system reactivity. Two conditions of HEBM with different force fields (17G and 90G) are applied and the results are compared. The influence of HEBM's conditions on the microstructure of mechanically treated mixtures and combustion products is also investigated and discussed. Obtained results suggest that by changing the intensity of mechanical treatment one may prepare a completely amorphous reactive mixture containing carbon and silicon, or gradually change the ratio of (Si/C)–SiC phases and finally produce pure silicon carbide powder during the milling process. The influence of HEBM on the combustibility of the Si/C mixture possesses a critical character: the self‐sustained reaction becomes feasible only after a critical time of ball milling (i.e., 10 min for 90G; 30 min for 17G). Comparison of the microstructures for as‐milled and as‐synthesized powders reveals that for all investigated conditions the morphologies of the as‐milled reactive Si/C media are essentially the same as that for SiC combustion products. The mechanism for direct synthesis of SiC by combustion reaction is also proposed.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.12107</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>Ball milling ; Combustion synthesis ; Comparative analysis ; Microstructure ; Nanomaterials ; Nanostructure ; Self-propagating synthesis ; Silicon ; Silicon carbide ; Synthesis ; Temperature</subject><ispartof>Journal of the American Ceramic Society, 2013-01, Vol.96 (1), p.111-117</ispartof><rights>2012 The American Ceramic Society</rights><rights>Copyright American Ceramic Society Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4387-6f3a7c1840dd252006c6ad0355c2a7b2dd577d54f034cc9b06bfafb8c69c25bf3</citedby><cites>FETCH-LOGICAL-c4387-6f3a7c1840dd252006c6ad0355c2a7b2dd577d54f034cc9b06bfafb8c69c25bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><contributor>Cutler, R.</contributor><creatorcontrib>Mukasyan, Alexander S.</creatorcontrib><creatorcontrib>Lin, Ya-Cheng</creatorcontrib><creatorcontrib>Rogachev, Alexander S.</creatorcontrib><creatorcontrib>Moskovskikh, Dmitry O.</creatorcontrib><title>Direct Combustion Synthesis of Silicon Carbide Nanopowder from the Elements</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>Direct synthesis of silicon carbide (SiC) nanopowders (size 50–200 nm, BET ~20 m2/g) in Si–C system is conducted in an inert atmosphere (argon) using a self‐propagating high‐temperature synthesis (SHS) approach. A preliminary short‐term (e.g., minutes) high‐energy ball milling (HEBM) of the initial mixture, which involves pure Si and C powders, is used to enhance system reactivity. Two conditions of HEBM with different force fields (17G and 90G) are applied and the results are compared. The influence of HEBM's conditions on the microstructure of mechanically treated mixtures and combustion products is also investigated and discussed. Obtained results suggest that by changing the intensity of mechanical treatment one may prepare a completely amorphous reactive mixture containing carbon and silicon, or gradually change the ratio of (Si/C)–SiC phases and finally produce pure silicon carbide powder during the milling process. The influence of HEBM on the combustibility of the Si/C mixture possesses a critical character: the self‐sustained reaction becomes feasible only after a critical time of ball milling (i.e., 10 min for 90G; 30 min for 17G). Comparison of the microstructures for as‐milled and as‐synthesized powders reveals that for all investigated conditions the morphologies of the as‐milled reactive Si/C media are essentially the same as that for SiC combustion products. The mechanism for direct synthesis of SiC by combustion reaction is also proposed.</description><subject>Ball milling</subject><subject>Combustion synthesis</subject><subject>Comparative analysis</subject><subject>Microstructure</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Self-propagating synthesis</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Synthesis</subject><subject>Temperature</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqN0U1P2zAYB3ALDYmOceETRNoFIQX8_nJkWWGwqhwK4mg5ji1ckrjYqVi__QKFHTgMfLFs_f6P9OgPwCGCJ2g8p0tj3QnCCIodMEGMoRIrxL-ACYQQl0JiuAe-5rwcn0hJOgG_f4bk7FBUsavXeQixLxabfrh3OeQi-mIR2mDHz8qkOjSumJs-ruJT41LhU-yKURbT1nWuH_I3sOtNm93B670Pbs-nN9WvcnZ9cVmdzUpLiRQl98QIiySFTYMZhpBbbhpIGLPYiBo3DROiYdRDQq1VNeS1N76WliuLWe3JPjjazl2l-Lh2edBdyNa1reldXGeNuMKEUsXVx5RggqmEWH6CIsapVAKP9Ps7uozr1I87a4S5EEpJSEd1vFU2xZyT83qVQmfSRiOon9vSz23pl7ZGjLb4KbRu8x-pr86q6Vum3GZCHtyffxmTHjQXRDB9N7_QC3Y1R7NzoX-QvwhIpCc</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Mukasyan, Alexander S.</creator><creator>Lin, Ya-Cheng</creator><creator>Rogachev, Alexander S.</creator><creator>Moskovskikh, Dmitry O.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201301</creationdate><title>Direct Combustion Synthesis of Silicon Carbide Nanopowder from the Elements</title><author>Mukasyan, Alexander S. ; Lin, Ya-Cheng ; Rogachev, Alexander S. ; Moskovskikh, Dmitry O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4387-6f3a7c1840dd252006c6ad0355c2a7b2dd577d54f034cc9b06bfafb8c69c25bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ball milling</topic><topic>Combustion synthesis</topic><topic>Comparative analysis</topic><topic>Microstructure</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Self-propagating synthesis</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Synthesis</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukasyan, Alexander S.</creatorcontrib><creatorcontrib>Lin, Ya-Cheng</creatorcontrib><creatorcontrib>Rogachev, Alexander S.</creatorcontrib><creatorcontrib>Moskovskikh, Dmitry O.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukasyan, Alexander S.</au><au>Lin, Ya-Cheng</au><au>Rogachev, Alexander S.</au><au>Moskovskikh, Dmitry O.</au><au>Cutler, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Combustion Synthesis of Silicon Carbide Nanopowder from the Elements</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2013-01</date><risdate>2013</risdate><volume>96</volume><issue>1</issue><spage>111</spage><epage>117</epage><pages>111-117</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Direct synthesis of silicon carbide (SiC) nanopowders (size 50–200 nm, BET ~20 m2/g) in Si–C system is conducted in an inert atmosphere (argon) using a self‐propagating high‐temperature synthesis (SHS) approach. A preliminary short‐term (e.g., minutes) high‐energy ball milling (HEBM) of the initial mixture, which involves pure Si and C powders, is used to enhance system reactivity. Two conditions of HEBM with different force fields (17G and 90G) are applied and the results are compared. The influence of HEBM's conditions on the microstructure of mechanically treated mixtures and combustion products is also investigated and discussed. Obtained results suggest that by changing the intensity of mechanical treatment one may prepare a completely amorphous reactive mixture containing carbon and silicon, or gradually change the ratio of (Si/C)–SiC phases and finally produce pure silicon carbide powder during the milling process. The influence of HEBM on the combustibility of the Si/C mixture possesses a critical character: the self‐sustained reaction becomes feasible only after a critical time of ball milling (i.e., 10 min for 90G; 30 min for 17G). Comparison of the microstructures for as‐milled and as‐synthesized powders reveals that for all investigated conditions the morphologies of the as‐milled reactive Si/C media are essentially the same as that for SiC combustion products. The mechanism for direct synthesis of SiC by combustion reaction is also proposed.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.12107</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2013-01, Vol.96 (1), p.111-117
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_1692344969
source Wiley-Blackwell Read & Publish Collection
subjects Ball milling
Combustion synthesis
Comparative analysis
Microstructure
Nanomaterials
Nanostructure
Self-propagating synthesis
Silicon
Silicon carbide
Synthesis
Temperature
title Direct Combustion Synthesis of Silicon Carbide Nanopowder from the Elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T16%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Combustion%20Synthesis%20of%20Silicon%20Carbide%20Nanopowder%20from%20the%20Elements&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Mukasyan,%20Alexander%20S.&rft.date=2013-01&rft.volume=96&rft.issue=1&rft.spage=111&rft.epage=117&rft.pages=111-117&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.12107&rft_dat=%3Cproquest_cross%3E1692344969%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4387-6f3a7c1840dd252006c6ad0355c2a7b2dd577d54f034cc9b06bfafb8c69c25bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1267799804&rft_id=info:pmid/&rfr_iscdi=true