Loading…

Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion

This article follows the main contributions brought to the nonlinear modeling literature. We investigate and review a series of parametric initiatives, focusing on the evolution of TAR and ARCH – GARCH model families in econometric and forecasting applications.

Saved in:
Bibliographic Details
Published in:Computational Methods in Social Sciences 2014-01, Vol.2 (1), p.42-47
Main Authors: Călin, Adrian Cantemir, Diaconescu, Tiberiu, Popovici, Oana Cristina
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 47
container_issue 1
container_start_page 42
container_title Computational Methods in Social Sciences
container_volume 2
creator Călin, Adrian Cantemir
Diaconescu, Tiberiu
Popovici, Oana Cristina
description This article follows the main contributions brought to the nonlinear modeling literature. We investigate and review a series of parametric initiatives, focusing on the evolution of TAR and ARCH – GARCH model families in econometric and forecasting applications.
format article
fullrecord <record><control><sourceid>ceeol_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692364628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ceeol_id>417009</ceeol_id><doaj_id>oai_doaj_org_article_b8b05ccb8a634cb0b862d7a10b11f2de</doaj_id><sourcerecordid>417009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1488-ea352e49be1ab63ce080f0a3553323677ff5402c8188f2a3aa643aa4c03962ca3</originalsourceid><addsrcrecordid>eNpdj09LAzEQxRdRsNR-Aw8BL14W8m-zWW-ltlqoCqLnZZLNlpQ0qcmu4Lc3WkHxMjPv8ePx5qSYUMZ5SSijp3_u82KW0g5jTBitGGaT4vkxeGe9gYgeQmdcQn2IaKmDD3ur0SpEoyEN1m_R_HBwVsNgg083aO7R8j248UtC_EC3NukxpawuirMeXDKznz0tXlfLl8V9uXm6Wy_mm1ITLmVpgFXU8EYZAkowbbDEPc5mxRhloq77vuKYakmk7CkwAMHz4BqzRlANbFqsj7ldgF17iHafe7QBbPtthLhtIQ5WO9MqqXCltZIgGNcKKyloVwPBipCediZnXR-zDjG8jSYN7T7_Y5wDb8KYWiKa3IkLKjN69Q_dhTH6_GmmJCaU5n6ZujxS2pjgfhFOaowb9gmzM31r</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680122396</pqid></control><display><type>article</type><title>Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion</title><source>Publicly Available Content Database</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><creator>Călin, Adrian Cantemir ; Diaconescu, Tiberiu ; Popovici, Oana Cristina</creator><creatorcontrib>Călin, Adrian Cantemir ; Diaconescu, Tiberiu ; Popovici, Oana Cristina</creatorcontrib><description>This article follows the main contributions brought to the nonlinear modeling literature. We investigate and review a series of parametric initiatives, focusing on the evolution of TAR and ARCH – GARCH model families in econometric and forecasting applications.</description><identifier>ISSN: 2344-1232</identifier><identifier>EISSN: 2344-1232</identifier><language>eng</language><publisher>Bucharest: Nicolae Titulescu University</publisher><subject>ARCH - GARCH models ; Arches ; Computation ; Economic forecasting ; Economy ; Evolution ; Evolutionary ; Forecasting ; Forecasting techniques ; Mathematical models ; nonlinear parametric models ; Nonlinearity ; Socio-Economic Research ; Statistical methods ; Stochastic models ; threshold models</subject><ispartof>Computational Methods in Social Sciences, 2014-01, Vol.2 (1), p.42-47</ispartof><rights>Copyright Nicolae Titulescu University Editorial House 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.ceeol.com//api/image/getissuecoverimage?id=picture_2014_26495.jpg</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1680122396/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1680122396?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21394,25753,33611,33612,37012,37013,43733,44590,74093,74998</link.rule.ids></links><search><creatorcontrib>Călin, Adrian Cantemir</creatorcontrib><creatorcontrib>Diaconescu, Tiberiu</creatorcontrib><creatorcontrib>Popovici, Oana Cristina</creatorcontrib><title>Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion</title><title>Computational Methods in Social Sciences</title><addtitle>Computational Methods in Social Sciences</addtitle><description>This article follows the main contributions brought to the nonlinear modeling literature. We investigate and review a series of parametric initiatives, focusing on the evolution of TAR and ARCH – GARCH model families in econometric and forecasting applications.</description><subject>ARCH - GARCH models</subject><subject>Arches</subject><subject>Computation</subject><subject>Economic forecasting</subject><subject>Economy</subject><subject>Evolution</subject><subject>Evolutionary</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Mathematical models</subject><subject>nonlinear parametric models</subject><subject>Nonlinearity</subject><subject>Socio-Economic Research</subject><subject>Statistical methods</subject><subject>Stochastic models</subject><subject>threshold models</subject><issn>2344-1232</issn><issn>2344-1232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdj09LAzEQxRdRsNR-Aw8BL14W8m-zWW-ltlqoCqLnZZLNlpQ0qcmu4Lc3WkHxMjPv8ePx5qSYUMZ5SSijp3_u82KW0g5jTBitGGaT4vkxeGe9gYgeQmdcQn2IaKmDD3ur0SpEoyEN1m_R_HBwVsNgg083aO7R8j248UtC_EC3NukxpawuirMeXDKznz0tXlfLl8V9uXm6Wy_mm1ITLmVpgFXU8EYZAkowbbDEPc5mxRhloq77vuKYakmk7CkwAMHz4BqzRlANbFqsj7ldgF17iHafe7QBbPtthLhtIQ5WO9MqqXCltZIgGNcKKyloVwPBipCediZnXR-zDjG8jSYN7T7_Y5wDb8KYWiKa3IkLKjN69Q_dhTH6_GmmJCaU5n6ZujxS2pjgfhFOaowb9gmzM31r</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Călin, Adrian Cantemir</creator><creator>Diaconescu, Tiberiu</creator><creator>Popovici, Oana Cristina</creator><general>Nicolae Titulescu University</general><general>Universitatea Nicolae Titulescu</general><general>Nicolae Titulescu University Editorial House</general><general>"Nicolae Titulescu" University of Bucharest</general><scope>AE2</scope><scope>BIXPP</scope><scope>REL</scope><scope>0-V</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88J</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion</title><author>Călin, Adrian Cantemir ; Diaconescu, Tiberiu ; Popovici, Oana Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1488-ea352e49be1ab63ce080f0a3553323677ff5402c8188f2a3aa643aa4c03962ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ARCH - GARCH models</topic><topic>Arches</topic><topic>Computation</topic><topic>Economic forecasting</topic><topic>Economy</topic><topic>Evolution</topic><topic>Evolutionary</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Mathematical models</topic><topic>nonlinear parametric models</topic><topic>Nonlinearity</topic><topic>Socio-Economic Research</topic><topic>Statistical methods</topic><topic>Stochastic models</topic><topic>threshold models</topic><toplevel>online_resources</toplevel><creatorcontrib>Călin, Adrian Cantemir</creatorcontrib><creatorcontrib>Diaconescu, Tiberiu</creatorcontrib><creatorcontrib>Popovici, Oana Cristina</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>CEEOL: Open Access</collection><collection>Central and Eastern European Online Library - CEEOL Journals</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Social Science Database (ProQuest)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Computational Methods in Social Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Călin, Adrian Cantemir</au><au>Diaconescu, Tiberiu</au><au>Popovici, Oana Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion</atitle><jtitle>Computational Methods in Social Sciences</jtitle><addtitle>Computational Methods in Social Sciences</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2</volume><issue>1</issue><spage>42</spage><epage>47</epage><pages>42-47</pages><issn>2344-1232</issn><eissn>2344-1232</eissn><abstract>This article follows the main contributions brought to the nonlinear modeling literature. We investigate and review a series of parametric initiatives, focusing on the evolution of TAR and ARCH – GARCH model families in econometric and forecasting applications.</abstract><cop>Bucharest</cop><pub>Nicolae Titulescu University</pub><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2344-1232
ispartof Computational Methods in Social Sciences, 2014-01, Vol.2 (1), p.42-47
issn 2344-1232
2344-1232
language eng
recordid cdi_proquest_miscellaneous_1692364628
source Publicly Available Content Database; Social Science Premium Collection (Proquest) (PQ_SDU_P3)
subjects ARCH - GARCH models
Arches
Computation
Economic forecasting
Economy
Evolution
Evolutionary
Forecasting
Forecasting techniques
Mathematical models
nonlinear parametric models
Nonlinearity
Socio-Economic Research
Statistical methods
Stochastic models
threshold models
title Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Models%20for%20Economic%20Forecasting%20Applications:%20An%20Evolutionary%20Discussion&rft.jtitle=Computational%20Methods%20in%20Social%20Sciences&rft.au=C%C4%83lin,%20Adrian%20Cantemir&rft.date=2014-01-01&rft.volume=2&rft.issue=1&rft.spage=42&rft.epage=47&rft.pages=42-47&rft.issn=2344-1232&rft.eissn=2344-1232&rft_id=info:doi/&rft_dat=%3Cceeol_proqu%3E417009%3C/ceeol_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1488-ea352e49be1ab63ce080f0a3553323677ff5402c8188f2a3aa643aa4c03962ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1680122396&rft_id=info:pmid/&rft_ceeol_id=417009&rfr_iscdi=true