Loading…

Effect of indium concentration on morphology and optical properties of In-doped ZnO nanostructures

In-doped ZnO nanostructures with different indium concentrations were grown using a thermal evaporation method. The In-doped ZnO nanostructures with a low concentration of indium exhibited a javelin shape, while the In-doped ZnO nanostructures with a high concentration of indium showed a flake shape...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2012-12, Vol.38 (8), p.6295-6301
Main Authors: Yousefi, Ramin, Jamali-Sheini, Farid, Khorsand Zak, A., Mahmoudian, M.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In-doped ZnO nanostructures with different indium concentrations were grown using a thermal evaporation method. The In-doped ZnO nanostructures with a low concentration of indium exhibited a javelin shape, while the In-doped ZnO nanostructures with a high concentration of indium showed a flake shape. In addition, undoped ZnO nanojavelins were grown under the same conditions, but the sizes of these undoped ZnO nanojavelins were larger than the In-doped ZnO nanojavelins. It was shown that the In3+ cations played a crucial role in controlling the size. X-ray diffraction and Raman spectroscopy clearly showed hexagonal structures for all of the products. However, the Raman results demonstrated that the In-doped ZnO nanoflakes had a lower crystalline quality than the In-doped ZnO nanojavelins. Furthermore, photoluminescence (PL) measurements confirmed the Raman results. Moreover, the PL results demonstrated a larger band-gap for the In-doped ZnO nanostructures in comparison to the undoped ZnO.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2012.04.085