Loading…
Time-resolved Bragg coherent X-ray diffraction revealing ultrafast lattice dynamics in nano-thickness crystal layer using X-ray free electron laser
Ultrafast time-resolved Bragg coherent X-ray diffraction (CXD) has been performed to investigate lattice dynamics in a thin crystal layer with a nanoscale thickness by using a SASE (Self-Amplified Spontaneous Emission)–XFEL (X-ray Free Electron Laser) facility, SACLA. Single-shot Bragg coherent diff...
Saved in:
Published in: | Journal of the Ceramic Society of Japan 2013/03/01, Vol.121(1411), pp.283-286 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultrafast time-resolved Bragg coherent X-ray diffraction (CXD) has been performed to investigate lattice dynamics in a thin crystal layer with a nanoscale thickness by using a SASE (Self-Amplified Spontaneous Emission)–XFEL (X-ray Free Electron Laser) facility, SACLA. Single-shot Bragg coherent diffraction patterns of a 100 nm-thick silicon crystal were measured in the asymmetric configuration with a grazing exit using an area detector. The measured coherent diffraction patterns showed fringes extending in the surface normal direction. By using an optical femtosecond laser-pump and the XFEL-probe, a transient broadening of coherent diffraction pattern profile was observed at a delay time of around a few tens of picosecond, indicating transient crystal lattice fluctuation induced by the optical laser. A perspective application of the time-resolved Bragg CXD method to investigate small sized grains composing ceramic materials is discussed. |
---|---|
ISSN: | 1882-0743 1348-6535 |
DOI: | 10.2109/jcersj2.121.283 |