Loading…
Uranium Uptake by Montmorillonite-Biomass Complexes
Montmorillonite clays and biomass have noticeable metal sorption capacity. Clays or biomass are difficult to separate from the solution when used as sorbent materials. A methodology to retain biomass and improve separation processes is to generate clay biopolymers matrices from fungal biomass grown...
Saved in:
Published in: | Industrial & engineering chemistry research 2013-02, Vol.52 (6), p.2273-2279 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Montmorillonite clays and biomass have noticeable metal sorption capacity. Clays or biomass are difficult to separate from the solution when used as sorbent materials. A methodology to retain biomass and improve separation processes is to generate clay biopolymers matrices from fungal biomass grown on a natural Montmorillonite (MMT). The objective of this study is to generate and characterize clay biopolymers matrices and evaluate their uranium adsorption capacity. The generated clay biopolymers (BMMTs) were characterized through X-ray diffraction, measurement of the apparent diameter of particles, and electrophoretic mobility. Some BMMTs showed greater Uranium-specific adsorption capacity than that found for MMT. The X-ray diffraction analysis indicated that the Uranium was located partially in the clay interlayer. The BMMT surfaces were more negatively charged than the MMT surface, thus favoring their uranium uptake. Also, immobilization of the biomass and better coagulation of the system were achieved. These preliminary studies indicate that BMMTs have a great potentiality for uranium uptake processes. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie301773p |