Loading…

Effects of Additives on the Morphology and Performance of PPTA/PVDF in Situ Blend UF Membrane

Poly(p-phenylene terephtalamide) (PPTA), a high-performance polymer with high modulus and good hydrophilicity, is often used as a reinforced material. However, due to its high crystallity, micro-phase separation often occurs in the blends. In this paper, PPTA/poly(vinylidene fluoride) (PVDF) compati...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2014, Vol.6 (6), p.1846-1861
Main Authors: Li, Hong-Bin, Shi, Wen-Ying, Zhang, Yu-Feng, Liu, Dong-Qing, Liu, Xiao-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly(p-phenylene terephtalamide) (PPTA), a high-performance polymer with high modulus and good hydrophilicity, is often used as a reinforced material. However, due to its high crystallity, micro-phase separation often occurs in the blends. In this paper, PPTA/poly(vinylidene fluoride) (PVDF) compatible blend solution was synthesized by in situ polycondensation. Blend ultra-filtration membrane was prepared through the immersion phase inversion process. In order to obtain desired pore structure, the effects of different additives including hydrophilic polymer (polyethylene glycol (PEG)), inorganic salt (lithium chloride (LiCl)) and the surfactant (Tween-80) on the morphology and performance of PPTA/PVDF blend membranes were studied. The membrane formation process was investigated through ternary phase diagram (thermodynamics) and viscosities (kinetics) analysis. It was found that, with the increasing of LiCl content, a porous membrane structure with long finger-like pores was formed due to the accelerated demixing process which resulted in the increase of porosity and pore diameter as well as the enhancement of water flux and the decline of PEG rejection. When Tween content increased to over 3 wt%, dynamic viscosity became the main factor resulting in a decreased phase separation rate. The transfer of PEG and LiCl molecules onto membrane surface increased the surface hydrophilicity. The effect of Tween content on membrane hydrophilicity was also correlated with the compatibility of blend components.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym6061846