Loading…

Nondestructive compositional depth profiling using variable-kinetic energy hard X-ray photoelectron spectroscopy and maximum entropy regularization

We discuss the calculation of nondestructive compositional depth profiles from regularization of variable kinetic energy hard X‐ray photoelectron spectroscopy (VKE‐XPS) data, adapting techniques developed for angle‐resolved XPS. Simulated TiO2/Si film structures are analyzed to demonstrate the appli...

Full description

Saved in:
Bibliographic Details
Published in:Surface and interface analysis 2014-06, Vol.46 (6), p.407-417
Main Authors: Weiland, C., Krajewski, J., Opila, R., Pallem, V., Dussarrat, C., Woicik, J. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3977-3dd07b85638d4d35901fbdeac3704a3e18d6cb13303817970bd697301ac1fde23
cites cdi_FETCH-LOGICAL-c3977-3dd07b85638d4d35901fbdeac3704a3e18d6cb13303817970bd697301ac1fde23
container_end_page 417
container_issue 6
container_start_page 407
container_title Surface and interface analysis
container_volume 46
creator Weiland, C.
Krajewski, J.
Opila, R.
Pallem, V.
Dussarrat, C.
Woicik, J. C.
description We discuss the calculation of nondestructive compositional depth profiles from regularization of variable kinetic energy hard X‐ray photoelectron spectroscopy (VKE‐XPS) data, adapting techniques developed for angle‐resolved XPS. Simulated TiO2/Si film structures are analyzed to demonstrate the applicability of regularization techniques to the VKE‐XPS data and to determine the optimum choice of regularization function and the number of data points. We find that using a maximum entropy‐like method, when the initial model/prior thickness is similar to the simulated film thickness, provides the best results for cases where prior knowledge of the sample exists. For the simple structures analyzed, we find that only five kinetic energy spectra are necessary to provide a good fit to the data, although in general, the number of spectra will depend on the sample structure and noisiness of the data. The maximum entropy‐like algorithm is then applied to two physical films of TiO2 deposited on Si. Results suggest interfacial intermixing. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
doi_str_mv 10.1002/sia.5517
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692418065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541435918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3977-3dd07b85638d4d35901fbdeac3704a3e18d6cb13303817970bd697301ac1fde23</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhSMEEpeCxCNYYsMmxRMnsb2sruC2UlUE5W9nOfbkXrdJHOykNLwGL4xDEQgkxMZjjb45Y5-TZU-BHgOlxYvo9HFVAb-XbYDKOpcSxP1sQ6Es8qIs4GH2KMYrSqlgot5k3y78YDFOYTaTu0FifD_66CbnB90Ri-N0IGPwrevcsCdzXM8bHZxuOsyv3YCTMwQHDPuFHHSw5FMe9ELGg588dmim4AcSxx-XaPy4ED1Y0utb1899Gkzt1Au4n7uk-lWvix9nD1rdRXzysx5l71-9fLc9zc9f7862J-e5YZLznFlLeSOqmglbWlZJCm1jURvGaakZgrC1aYAxygRwyWlja8kZBW2gtViwo-z5nW764Oc5maB6Fw12nR7Qz1FBLYsSBK2r_6NVCWV6AoiEPvsLvfJzSG6uVAGiZLKgvwVN8iUGbNUYXK_DooCqNUiVglRrkAnN79AvrsPln5y6PDv5k3dxwttfvA7XquaMV-rjxU7J3Ye3l8VWqDfsOwHosXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1521843920</pqid></control><display><type>article</type><title>Nondestructive compositional depth profiling using variable-kinetic energy hard X-ray photoelectron spectroscopy and maximum entropy regularization</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Weiland, C. ; Krajewski, J. ; Opila, R. ; Pallem, V. ; Dussarrat, C. ; Woicik, J. C.</creator><creatorcontrib>Weiland, C. ; Krajewski, J. ; Opila, R. ; Pallem, V. ; Dussarrat, C. ; Woicik, J. C.</creatorcontrib><description>We discuss the calculation of nondestructive compositional depth profiles from regularization of variable kinetic energy hard X‐ray photoelectron spectroscopy (VKE‐XPS) data, adapting techniques developed for angle‐resolved XPS. Simulated TiO2/Si film structures are analyzed to demonstrate the applicability of regularization techniques to the VKE‐XPS data and to determine the optimum choice of regularization function and the number of data points. We find that using a maximum entropy‐like method, when the initial model/prior thickness is similar to the simulated film thickness, provides the best results for cases where prior knowledge of the sample exists. For the simple structures analyzed, we find that only five kinetic energy spectra are necessary to provide a good fit to the data, although in general, the number of spectra will depend on the sample structure and noisiness of the data. The maximum entropy‐like algorithm is then applied to two physical films of TiO2 deposited on Si. Results suggest interfacial intermixing. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.5517</identifier><identifier>CODEN: SIANDQ</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>compositional depth profiles ; Computer simulation ; Energy ; Entropy ; HAXPES ; Kinetic energy ; Mathematical models ; maximum entropy ; Photoelectron spectroscopy ; Regularization ; Spectra ; Spectrum analysis ; Titanium dioxide ; X-rays</subject><ispartof>Surface and interface analysis, 2014-06, Vol.46 (6), p.407-417</ispartof><rights>Published 2014. This article is a U.S. Government work and is in the public domain in the USA.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3977-3dd07b85638d4d35901fbdeac3704a3e18d6cb13303817970bd697301ac1fde23</citedby><cites>FETCH-LOGICAL-c3977-3dd07b85638d4d35901fbdeac3704a3e18d6cb13303817970bd697301ac1fde23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Weiland, C.</creatorcontrib><creatorcontrib>Krajewski, J.</creatorcontrib><creatorcontrib>Opila, R.</creatorcontrib><creatorcontrib>Pallem, V.</creatorcontrib><creatorcontrib>Dussarrat, C.</creatorcontrib><creatorcontrib>Woicik, J. C.</creatorcontrib><title>Nondestructive compositional depth profiling using variable-kinetic energy hard X-ray photoelectron spectroscopy and maximum entropy regularization</title><title>Surface and interface analysis</title><addtitle>Surf. Interface Anal</addtitle><description>We discuss the calculation of nondestructive compositional depth profiles from regularization of variable kinetic energy hard X‐ray photoelectron spectroscopy (VKE‐XPS) data, adapting techniques developed for angle‐resolved XPS. Simulated TiO2/Si film structures are analyzed to demonstrate the applicability of regularization techniques to the VKE‐XPS data and to determine the optimum choice of regularization function and the number of data points. We find that using a maximum entropy‐like method, when the initial model/prior thickness is similar to the simulated film thickness, provides the best results for cases where prior knowledge of the sample exists. For the simple structures analyzed, we find that only five kinetic energy spectra are necessary to provide a good fit to the data, although in general, the number of spectra will depend on the sample structure and noisiness of the data. The maximum entropy‐like algorithm is then applied to two physical films of TiO2 deposited on Si. Results suggest interfacial intermixing. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.</description><subject>compositional depth profiles</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Entropy</subject><subject>HAXPES</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>maximum entropy</subject><subject>Photoelectron spectroscopy</subject><subject>Regularization</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>X-rays</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1TAQhSMEEpeCxCNYYsMmxRMnsb2sruC2UlUE5W9nOfbkXrdJHOykNLwGL4xDEQgkxMZjjb45Y5-TZU-BHgOlxYvo9HFVAb-XbYDKOpcSxP1sQ6Es8qIs4GH2KMYrSqlgot5k3y78YDFOYTaTu0FifD_66CbnB90Ri-N0IGPwrevcsCdzXM8bHZxuOsyv3YCTMwQHDPuFHHSw5FMe9ELGg588dmim4AcSxx-XaPy4ED1Y0utb1899Gkzt1Au4n7uk-lWvix9nD1rdRXzysx5l71-9fLc9zc9f7862J-e5YZLznFlLeSOqmglbWlZJCm1jURvGaakZgrC1aYAxygRwyWlja8kZBW2gtViwo-z5nW764Oc5maB6Fw12nR7Qz1FBLYsSBK2r_6NVCWV6AoiEPvsLvfJzSG6uVAGiZLKgvwVN8iUGbNUYXK_DooCqNUiVglRrkAnN79AvrsPln5y6PDv5k3dxwttfvA7XquaMV-rjxU7J3Ye3l8VWqDfsOwHosXg</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Weiland, C.</creator><creator>Krajewski, J.</creator><creator>Opila, R.</creator><creator>Pallem, V.</creator><creator>Dussarrat, C.</creator><creator>Woicik, J. C.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201406</creationdate><title>Nondestructive compositional depth profiling using variable-kinetic energy hard X-ray photoelectron spectroscopy and maximum entropy regularization</title><author>Weiland, C. ; Krajewski, J. ; Opila, R. ; Pallem, V. ; Dussarrat, C. ; Woicik, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3977-3dd07b85638d4d35901fbdeac3704a3e18d6cb13303817970bd697301ac1fde23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>compositional depth profiles</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Entropy</topic><topic>HAXPES</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>maximum entropy</topic><topic>Photoelectron spectroscopy</topic><topic>Regularization</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiland, C.</creatorcontrib><creatorcontrib>Krajewski, J.</creatorcontrib><creatorcontrib>Opila, R.</creatorcontrib><creatorcontrib>Pallem, V.</creatorcontrib><creatorcontrib>Dussarrat, C.</creatorcontrib><creatorcontrib>Woicik, J. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiland, C.</au><au>Krajewski, J.</au><au>Opila, R.</au><au>Pallem, V.</au><au>Dussarrat, C.</au><au>Woicik, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructive compositional depth profiling using variable-kinetic energy hard X-ray photoelectron spectroscopy and maximum entropy regularization</atitle><jtitle>Surface and interface analysis</jtitle><addtitle>Surf. Interface Anal</addtitle><date>2014-06</date><risdate>2014</risdate><volume>46</volume><issue>6</issue><spage>407</spage><epage>417</epage><pages>407-417</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><coden>SIANDQ</coden><abstract>We discuss the calculation of nondestructive compositional depth profiles from regularization of variable kinetic energy hard X‐ray photoelectron spectroscopy (VKE‐XPS) data, adapting techniques developed for angle‐resolved XPS. Simulated TiO2/Si film structures are analyzed to demonstrate the applicability of regularization techniques to the VKE‐XPS data and to determine the optimum choice of regularization function and the number of data points. We find that using a maximum entropy‐like method, when the initial model/prior thickness is similar to the simulated film thickness, provides the best results for cases where prior knowledge of the sample exists. For the simple structures analyzed, we find that only five kinetic energy spectra are necessary to provide a good fit to the data, although in general, the number of spectra will depend on the sample structure and noisiness of the data. The maximum entropy‐like algorithm is then applied to two physical films of TiO2 deposited on Si. Results suggest interfacial intermixing. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/sia.5517</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-2421
ispartof Surface and interface analysis, 2014-06, Vol.46 (6), p.407-417
issn 0142-2421
1096-9918
language eng
recordid cdi_proquest_miscellaneous_1692418065
source Wiley-Blackwell Read & Publish Collection
subjects compositional depth profiles
Computer simulation
Energy
Entropy
HAXPES
Kinetic energy
Mathematical models
maximum entropy
Photoelectron spectroscopy
Regularization
Spectra
Spectrum analysis
Titanium dioxide
X-rays
title Nondestructive compositional depth profiling using variable-kinetic energy hard X-ray photoelectron spectroscopy and maximum entropy regularization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructive%20compositional%20depth%20profiling%20using%20variable-kinetic%20energy%20hard%20X-ray%20photoelectron%20spectroscopy%20and%20maximum%20entropy%20regularization&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Weiland,%20C.&rft.date=2014-06&rft.volume=46&rft.issue=6&rft.spage=407&rft.epage=417&rft.pages=407-417&rft.issn=0142-2421&rft.eissn=1096-9918&rft.coden=SIANDQ&rft_id=info:doi/10.1002/sia.5517&rft_dat=%3Cproquest_cross%3E1541435918%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3977-3dd07b85638d4d35901fbdeac3704a3e18d6cb13303817970bd697301ac1fde23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1521843920&rft_id=info:pmid/&rfr_iscdi=true