Loading…

The boiling Twente Taylor-Couette (BTTC) facility: Temperature controlled turbulent flow between independently rotating, coaxial cylinders

A new Taylor-Couette system has been designed and constructed with precise temperature control. Two concentric independently rotating cylinders are able to rotate at maximum rates of f(i) = ± 20 Hz for the inner cylinder and f(o) = ± 10 Hz for the outer cylinder. The inner cylinder has an outside ra...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2015-06, Vol.86 (6), p.065108-065108
Main Authors: Huisman, Sander G, van der Veen, Roeland C A, Bruggert, Gert-Wim H, Lohse, Detlef, Sun, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new Taylor-Couette system has been designed and constructed with precise temperature control. Two concentric independently rotating cylinders are able to rotate at maximum rates of f(i) = ± 20 Hz for the inner cylinder and f(o) = ± 10 Hz for the outer cylinder. The inner cylinder has an outside radius of r(i) = 75 mm, and the outer cylinder has an inside radius of r(o) = 105 mm, resulting in a gap of d = 30 mm. The height of the gap is L = 549 mm, giving a volume of V = 9.3 L. The geometric parameters are η = r(i)/r(o) = 0.714 and Γ = L/d = 18.3. With water as working fluid at room temperature, the Reynolds numbers that can be achieved are Re(i) = ω(i)r(i)(r(o) - r(i))/ν = 2.8 × 10(5) and Re(o) = ω(o)r(o)(r(o) - r(i))/ν = 2 × 10(5) or a combined Reynolds number of up to Re = (ω(i)r(i) - ω(o)r(o))(r(o) - r(i))/ν = 4.8 × 10(5). If the working fluid is changed to the fluorinated liquid FC-3284 with kinematic viscosity 0.42 cSt, the combined Reynolds number can reach Re = 1.1 × 10(6). The apparatus features precise temperature control of the outer and inner cylinders separately and is fully optically accessible from the side and top. The new facility offers the possibility to accurately study the process of boiling inside a turbulent flow and its effect on the flow.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4923082