Loading…
The boiling Twente Taylor-Couette (BTTC) facility: Temperature controlled turbulent flow between independently rotating, coaxial cylinders
A new Taylor-Couette system has been designed and constructed with precise temperature control. Two concentric independently rotating cylinders are able to rotate at maximum rates of f(i) = ± 20 Hz for the inner cylinder and f(o) = ± 10 Hz for the outer cylinder. The inner cylinder has an outside ra...
Saved in:
Published in: | Review of scientific instruments 2015-06, Vol.86 (6), p.065108-065108 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new Taylor-Couette system has been designed and constructed with precise temperature control. Two concentric independently rotating cylinders are able to rotate at maximum rates of f(i) = ± 20 Hz for the inner cylinder and f(o) = ± 10 Hz for the outer cylinder. The inner cylinder has an outside radius of r(i) = 75 mm, and the outer cylinder has an inside radius of r(o) = 105 mm, resulting in a gap of d = 30 mm. The height of the gap is L = 549 mm, giving a volume of V = 9.3 L. The geometric parameters are η = r(i)/r(o) = 0.714 and Γ = L/d = 18.3. With water as working fluid at room temperature, the Reynolds numbers that can be achieved are Re(i) = ω(i)r(i)(r(o) - r(i))/ν = 2.8 × 10(5) and Re(o) = ω(o)r(o)(r(o) - r(i))/ν = 2 × 10(5) or a combined Reynolds number of up to Re = (ω(i)r(i) - ω(o)r(o))(r(o) - r(i))/ν = 4.8 × 10(5). If the working fluid is changed to the fluorinated liquid FC-3284 with kinematic viscosity 0.42 cSt, the combined Reynolds number can reach Re = 1.1 × 10(6). The apparatus features precise temperature control of the outer and inner cylinders separately and is fully optically accessible from the side and top. The new facility offers the possibility to accurately study the process of boiling inside a turbulent flow and its effect on the flow. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.4923082 |