Loading…

A temperature microsensor for measuring laser-induced heating in gold nanorods

Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer co...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2015-01, Vol.407 (3), p.719-725
Main Authors: Pacardo, Dennis B., Neupane, Bhanu, Wang, Gufeng, Gu, Zhen, Walker, Glenn M., Ligler, Frances S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c514t-ceda19134ebf67651353a9aecd050f75cb954954a4fff79c6f0c351de62440473
cites cdi_FETCH-LOGICAL-c514t-ceda19134ebf67651353a9aecd050f75cb954954a4fff79c6f0c351de62440473
container_end_page 725
container_issue 3
container_start_page 719
container_title Analytical and bioanalytical chemistry
container_volume 407
creator Pacardo, Dennis B.
Neupane, Bhanu
Wang, Gufeng
Gu, Zhen
Walker, Glenn M.
Ligler, Frances S.
description Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications.
doi_str_mv 10.1007/s00216-014-8222-9
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694978164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A410768933</galeid><sourcerecordid>A410768933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-ceda19134ebf67651353a9aecd050f75cb954954a4fff79c6f0c351de62440473</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpaNJtf0AvxdBLL040-rSOS0g_IDSX9Cy08mjrYEtbyT7031fGaSiFQpCExPC-o5l5CHkH9BIo1VeFUgaqpSDajjHWmhfkAhR0LVOSvnx6C3ZOXpfyQCnIDtQrcs4kp9xwdkG-7ZsZpxNmNy8Zm2nwORWMJeUm1DOhK0se4rEZXcHcDrFfPPbND3TzGh1ic0xj30QXU059eUPOghsLvn28d-T7p5v76y_t7d3nr9f729ZLEHNbUzgwwAUegtJKApfcGYe-p5IGLf3BSFG3EyEEbbwK1HMJPSomBBWa78jHLe8pp58LltlOQ_E4ji5iWooFZYTRtVnxDGknO1q_U8-QSiaYrjOv0g__SB_SkmPt2YKWQnHKan87crmpjm5EO8SQ5ux8XT3WSaeIYajxvQCqVWc4rwbYDCuGkjHYUx4ml39ZoHZlbjfmtjK3K3Nrquf9YynLYcL-yfEHchWwTVBOK0rMf9X636y_AesOtIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1754630291</pqid></control><display><type>article</type><title>A temperature microsensor for measuring laser-induced heating in gold nanorods</title><source>Springer Nature</source><creator>Pacardo, Dennis B. ; Neupane, Bhanu ; Wang, Gufeng ; Gu, Zhen ; Walker, Glenn M. ; Ligler, Frances S.</creator><creatorcontrib>Pacardo, Dennis B. ; Neupane, Bhanu ; Wang, Gufeng ; Gu, Zhen ; Walker, Glenn M. ; Ligler, Frances S.</creatorcontrib><description>Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-014-8222-9</identifier><identifier>PMID: 25303932</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>ABCs 13th Anniversary ; Analytical Chemistry ; Biochemistry ; Cancer ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chemistry Techniques, Analytical - instrumentation ; Chemistry Techniques, Analytical - methods ; Devices ; Enzymes ; Equipment Design ; Experimental methods ; Food Science ; Gold ; Heating ; Hot Temperature ; Hyperthermia ; Irradiation ; Laboratory Medicine ; Lasers ; Light ; Mathematical analysis ; Microtechnology ; Monitoring/Environmental Analysis ; Nanomaterials ; Nanoparticles ; Nanorods ; Nanostructure ; Nanotechnology ; Nanotubes - analysis ; Optical properties ; Rapid Communication ; Research methodology ; Sensors ; Silicon ; Silicon nitride ; Silicon wafers ; Temperature measurement ; Temperature measuring instruments ; Thermal energy ; Thermal properties</subject><ispartof>Analytical and bioanalytical chemistry, 2015-01, Vol.407 (3), p.719-725</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-ceda19134ebf67651353a9aecd050f75cb954954a4fff79c6f0c351de62440473</citedby><cites>FETCH-LOGICAL-c514t-ceda19134ebf67651353a9aecd050f75cb954954a4fff79c6f0c351de62440473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25303932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pacardo, Dennis B.</creatorcontrib><creatorcontrib>Neupane, Bhanu</creatorcontrib><creatorcontrib>Wang, Gufeng</creatorcontrib><creatorcontrib>Gu, Zhen</creatorcontrib><creatorcontrib>Walker, Glenn M.</creatorcontrib><creatorcontrib>Ligler, Frances S.</creatorcontrib><title>A temperature microsensor for measuring laser-induced heating in gold nanorods</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications.</description><subject>ABCs 13th Anniversary</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Cancer</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry Techniques, Analytical - instrumentation</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Devices</subject><subject>Enzymes</subject><subject>Equipment Design</subject><subject>Experimental methods</subject><subject>Food Science</subject><subject>Gold</subject><subject>Heating</subject><subject>Hot Temperature</subject><subject>Hyperthermia</subject><subject>Irradiation</subject><subject>Laboratory Medicine</subject><subject>Lasers</subject><subject>Light</subject><subject>Mathematical analysis</subject><subject>Microtechnology</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotubes - analysis</subject><subject>Optical properties</subject><subject>Rapid Communication</subject><subject>Research methodology</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Silicon nitride</subject><subject>Silicon wafers</subject><subject>Temperature measurement</subject><subject>Temperature measuring instruments</subject><subject>Thermal energy</subject><subject>Thermal properties</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1r3DAQhkVpaNJtf0AvxdBLL040-rSOS0g_IDSX9Cy08mjrYEtbyT7031fGaSiFQpCExPC-o5l5CHkH9BIo1VeFUgaqpSDajjHWmhfkAhR0LVOSvnx6C3ZOXpfyQCnIDtQrcs4kp9xwdkG-7ZsZpxNmNy8Zm2nwORWMJeUm1DOhK0se4rEZXcHcDrFfPPbND3TzGh1ic0xj30QXU059eUPOghsLvn28d-T7p5v76y_t7d3nr9f729ZLEHNbUzgwwAUegtJKApfcGYe-p5IGLf3BSFG3EyEEbbwK1HMJPSomBBWa78jHLe8pp58LltlOQ_E4ji5iWooFZYTRtVnxDGknO1q_U8-QSiaYrjOv0g__SB_SkmPt2YKWQnHKan87crmpjm5EO8SQ5ux8XT3WSaeIYajxvQCqVWc4rwbYDCuGkjHYUx4ml39ZoHZlbjfmtjK3K3Nrquf9YynLYcL-yfEHchWwTVBOK0rMf9X636y_AesOtIY</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Pacardo, Dennis B.</creator><creator>Neupane, Bhanu</creator><creator>Wang, Gufeng</creator><creator>Gu, Zhen</creator><creator>Walker, Glenn M.</creator><creator>Ligler, Frances S.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>20150101</creationdate><title>A temperature microsensor for measuring laser-induced heating in gold nanorods</title><author>Pacardo, Dennis B. ; Neupane, Bhanu ; Wang, Gufeng ; Gu, Zhen ; Walker, Glenn M. ; Ligler, Frances S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-ceda19134ebf67651353a9aecd050f75cb954954a4fff79c6f0c351de62440473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ABCs 13th Anniversary</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Cancer</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry Techniques, Analytical - instrumentation</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Devices</topic><topic>Enzymes</topic><topic>Equipment Design</topic><topic>Experimental methods</topic><topic>Food Science</topic><topic>Gold</topic><topic>Heating</topic><topic>Hot Temperature</topic><topic>Hyperthermia</topic><topic>Irradiation</topic><topic>Laboratory Medicine</topic><topic>Lasers</topic><topic>Light</topic><topic>Mathematical analysis</topic><topic>Microtechnology</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotubes - analysis</topic><topic>Optical properties</topic><topic>Rapid Communication</topic><topic>Research methodology</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Silicon nitride</topic><topic>Silicon wafers</topic><topic>Temperature measurement</topic><topic>Temperature measuring instruments</topic><topic>Thermal energy</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacardo, Dennis B.</creatorcontrib><creatorcontrib>Neupane, Bhanu</creatorcontrib><creatorcontrib>Wang, Gufeng</creatorcontrib><creatorcontrib>Gu, Zhen</creatorcontrib><creatorcontrib>Walker, Glenn M.</creatorcontrib><creatorcontrib>Ligler, Frances S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pacardo, Dennis B.</au><au>Neupane, Bhanu</au><au>Wang, Gufeng</au><au>Gu, Zhen</au><au>Walker, Glenn M.</au><au>Ligler, Frances S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A temperature microsensor for measuring laser-induced heating in gold nanorods</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>407</volume><issue>3</issue><spage>719</spage><epage>725</epage><pages>719-725</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25303932</pmid><doi>10.1007/s00216-014-8222-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2015-01, Vol.407 (3), p.719-725
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_1694978164
source Springer Nature
subjects ABCs 13th Anniversary
Analytical Chemistry
Biochemistry
Cancer
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chemistry Techniques, Analytical - instrumentation
Chemistry Techniques, Analytical - methods
Devices
Enzymes
Equipment Design
Experimental methods
Food Science
Gold
Heating
Hot Temperature
Hyperthermia
Irradiation
Laboratory Medicine
Lasers
Light
Mathematical analysis
Microtechnology
Monitoring/Environmental Analysis
Nanomaterials
Nanoparticles
Nanorods
Nanostructure
Nanotechnology
Nanotubes - analysis
Optical properties
Rapid Communication
Research methodology
Sensors
Silicon
Silicon nitride
Silicon wafers
Temperature measurement
Temperature measuring instruments
Thermal energy
Thermal properties
title A temperature microsensor for measuring laser-induced heating in gold nanorods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20temperature%20microsensor%20for%20measuring%20laser-induced%20heating%20in%20gold%20nanorods&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Pacardo,%20Dennis%20B.&rft.date=2015-01-01&rft.volume=407&rft.issue=3&rft.spage=719&rft.epage=725&rft.pages=719-725&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-014-8222-9&rft_dat=%3Cgale_proqu%3EA410768933%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-ceda19134ebf67651353a9aecd050f75cb954954a4fff79c6f0c351de62440473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1754630291&rft_id=info:pmid/25303932&rft_galeid=A410768933&rfr_iscdi=true