Loading…
Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma
Cancer cells with enhanced self‐renewal capacity influence tumour growth in glioblastoma. So far, a variety of surrogate markers have been proposed to enrich these cells, emphasizing the need to devise new characterization methods. Here, we screen a large panel of glioblastoma cultures (n = 21) cult...
Saved in:
Published in: | The Journal of pathology 2014-09, Vol.234 (1), p.23-33 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493 |
---|---|
cites | cdi_FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493 |
container_end_page | 33 |
container_issue | 1 |
container_start_page | 23 |
container_title | The Journal of pathology |
container_volume | 234 |
creator | Campos, Benito Gal, Zoltan Baader, Aline Schneider, Tilman Sliwinski, Christopher Gassel, Kristina Bageritz, Josephine Grabe, Niels von Deimling, Andreas Beckhove, Philipp Mogler, Carolin Goidts, Violaine Unterberg, Andreas Eckstein, Volker Herold-Mende, Christel |
description | Cancer cells with enhanced self‐renewal capacity influence tumour growth in glioblastoma. So far, a variety of surrogate markers have been proposed to enrich these cells, emphasizing the need to devise new characterization methods. Here, we screen a large panel of glioblastoma cultures (n = 21) cultivated under stem cell‐permissive conditions and identify several cell lines with enhanced self‐renewal capacity. These cell lines are capable of matrix‐independent growth and form fast‐growing, orthotopic tumours in mice. Employing isolation, re‐plating, and label‐retention techniques, we show that self‐renewal potential of individual cells is partitioned asymmetrically between daughter cells in a robust and cell line‐specific fashion. This yields populations of fast‐ and slow‐cycling cells, which differ in the expression of cell cycle‐associated transcripts. Intriguingly, fast‐growing cells keep their slow‐cycling counterparts in a reversible state of quiescence associated with high chemoresistance. Our results suggest that two different subpopulations of tumour cells contribute to aberrant growth and tumour recurrence after therapy in glioblastoma. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/path.4366 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694983643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3398322601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493</originalsourceid><addsrcrecordid>eNqF0U9LHDEYBvAgim6tB79AGfCih9H8n81xEavCYi1YhF5CknlnHTs7WZNM1W_jZ_GTNcuuHoTiKZD83ockD0L7BB8TjOnJwqS7Y86k3EAjgpUs1VjJTTTKZ7RknFQ76EuM9xhjpYTYRjuUV0KOJR2h24mFEEyfighdUwbo4dF0henr4mFoITroHRTO9ym0dkhQJP_6ku7g9cXMZgFibP_mkRgL3xSzrvW2MzH5ufmKthrTRdhbr7vo1_ezm9OLcvrj_PJ0Mi0dV1yW1ApOSEWY4NRY5vIuroGZylYNNjUDqWzDgfIaO9ZUWCrR1MZhQpw1hCu2iw5XuYvgHwaISc_bfOmuMz34IWoiFVdjJjn7nArBuVD57zI9-EDv_RD6_JClokwpSnhWRyvlgo8xQKMXoZ2b8KwJ1sti9LIYvSwm22_rxMHOoX6Xb01kcLICj20Hz_9P0teTm4t1ZLmaaGOCp_cJE_5oWbFK6Nurcz2WDLPfVz_1lP0DfRiooQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552399214</pqid></control><display><type>article</type><title>Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma</title><source>Wiley</source><creator>Campos, Benito ; Gal, Zoltan ; Baader, Aline ; Schneider, Tilman ; Sliwinski, Christopher ; Gassel, Kristina ; Bageritz, Josephine ; Grabe, Niels ; von Deimling, Andreas ; Beckhove, Philipp ; Mogler, Carolin ; Goidts, Violaine ; Unterberg, Andreas ; Eckstein, Volker ; Herold-Mende, Christel</creator><creatorcontrib>Campos, Benito ; Gal, Zoltan ; Baader, Aline ; Schneider, Tilman ; Sliwinski, Christopher ; Gassel, Kristina ; Bageritz, Josephine ; Grabe, Niels ; von Deimling, Andreas ; Beckhove, Philipp ; Mogler, Carolin ; Goidts, Violaine ; Unterberg, Andreas ; Eckstein, Volker ; Herold-Mende, Christel</creatorcontrib><description>Cancer cells with enhanced self‐renewal capacity influence tumour growth in glioblastoma. So far, a variety of surrogate markers have been proposed to enrich these cells, emphasizing the need to devise new characterization methods. Here, we screen a large panel of glioblastoma cultures (n = 21) cultivated under stem cell‐permissive conditions and identify several cell lines with enhanced self‐renewal capacity. These cell lines are capable of matrix‐independent growth and form fast‐growing, orthotopic tumours in mice. Employing isolation, re‐plating, and label‐retention techniques, we show that self‐renewal potential of individual cells is partitioned asymmetrically between daughter cells in a robust and cell line‐specific fashion. This yields populations of fast‐ and slow‐cycling cells, which differ in the expression of cell cycle‐associated transcripts. Intriguingly, fast‐growing cells keep their slow‐cycling counterparts in a reversible state of quiescence associated with high chemoresistance. Our results suggest that two different subpopulations of tumour cells contribute to aberrant growth and tumour recurrence after therapy in glioblastoma. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.4366</identifier><identifier>PMID: 24756862</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Cell Line, Tumor ; Cell Proliferation ; Comparative Genomic Hybridization ; Disease Models, Animal ; Gene Dosage - genetics ; Gene Expression Profiling ; glioblastoma ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Humans ; label retention ; Mice ; Neoplasm Recurrence, Local - pathology ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Oligonucleotide Array Sequence Analysis ; quiescence ; self-renewal ; self‐renewal; glioblastoma; label retention; quiescence</subject><ispartof>The Journal of pathology, 2014-09, Vol.234 (1), p.23-33</ispartof><rights>Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd</rights><rights>Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</rights><rights>Copyright © 2014 Pathological Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493</citedby><cites>FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24756862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campos, Benito</creatorcontrib><creatorcontrib>Gal, Zoltan</creatorcontrib><creatorcontrib>Baader, Aline</creatorcontrib><creatorcontrib>Schneider, Tilman</creatorcontrib><creatorcontrib>Sliwinski, Christopher</creatorcontrib><creatorcontrib>Gassel, Kristina</creatorcontrib><creatorcontrib>Bageritz, Josephine</creatorcontrib><creatorcontrib>Grabe, Niels</creatorcontrib><creatorcontrib>von Deimling, Andreas</creatorcontrib><creatorcontrib>Beckhove, Philipp</creatorcontrib><creatorcontrib>Mogler, Carolin</creatorcontrib><creatorcontrib>Goidts, Violaine</creatorcontrib><creatorcontrib>Unterberg, Andreas</creatorcontrib><creatorcontrib>Eckstein, Volker</creatorcontrib><creatorcontrib>Herold-Mende, Christel</creatorcontrib><title>Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>Cancer cells with enhanced self‐renewal capacity influence tumour growth in glioblastoma. So far, a variety of surrogate markers have been proposed to enrich these cells, emphasizing the need to devise new characterization methods. Here, we screen a large panel of glioblastoma cultures (n = 21) cultivated under stem cell‐permissive conditions and identify several cell lines with enhanced self‐renewal capacity. These cell lines are capable of matrix‐independent growth and form fast‐growing, orthotopic tumours in mice. Employing isolation, re‐plating, and label‐retention techniques, we show that self‐renewal potential of individual cells is partitioned asymmetrically between daughter cells in a robust and cell line‐specific fashion. This yields populations of fast‐ and slow‐cycling cells, which differ in the expression of cell cycle‐associated transcripts. Intriguingly, fast‐growing cells keep their slow‐cycling counterparts in a reversible state of quiescence associated with high chemoresistance. Our results suggest that two different subpopulations of tumour cells contribute to aberrant growth and tumour recurrence after therapy in glioblastoma. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><subject>Animals</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Comparative Genomic Hybridization</subject><subject>Disease Models, Animal</subject><subject>Gene Dosage - genetics</subject><subject>Gene Expression Profiling</subject><subject>glioblastoma</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>label retention</subject><subject>Mice</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>quiescence</subject><subject>self-renewal</subject><subject>self‐renewal; glioblastoma; label retention; quiescence</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0U9LHDEYBvAgim6tB79AGfCih9H8n81xEavCYi1YhF5CknlnHTs7WZNM1W_jZ_GTNcuuHoTiKZD83ockD0L7BB8TjOnJwqS7Y86k3EAjgpUs1VjJTTTKZ7RknFQ76EuM9xhjpYTYRjuUV0KOJR2h24mFEEyfighdUwbo4dF0henr4mFoITroHRTO9ym0dkhQJP_6ku7g9cXMZgFibP_mkRgL3xSzrvW2MzH5ufmKthrTRdhbr7vo1_ezm9OLcvrj_PJ0Mi0dV1yW1ApOSEWY4NRY5vIuroGZylYNNjUDqWzDgfIaO9ZUWCrR1MZhQpw1hCu2iw5XuYvgHwaISc_bfOmuMz34IWoiFVdjJjn7nArBuVD57zI9-EDv_RD6_JClokwpSnhWRyvlgo8xQKMXoZ2b8KwJ1sti9LIYvSwm22_rxMHOoX6Xb01kcLICj20Hz_9P0teTm4t1ZLmaaGOCp_cJE_5oWbFK6Nurcz2WDLPfVz_1lP0DfRiooQ</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Campos, Benito</creator><creator>Gal, Zoltan</creator><creator>Baader, Aline</creator><creator>Schneider, Tilman</creator><creator>Sliwinski, Christopher</creator><creator>Gassel, Kristina</creator><creator>Bageritz, Josephine</creator><creator>Grabe, Niels</creator><creator>von Deimling, Andreas</creator><creator>Beckhove, Philipp</creator><creator>Mogler, Carolin</creator><creator>Goidts, Violaine</creator><creator>Unterberg, Andreas</creator><creator>Eckstein, Volker</creator><creator>Herold-Mende, Christel</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201409</creationdate><title>Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma</title><author>Campos, Benito ; Gal, Zoltan ; Baader, Aline ; Schneider, Tilman ; Sliwinski, Christopher ; Gassel, Kristina ; Bageritz, Josephine ; Grabe, Niels ; von Deimling, Andreas ; Beckhove, Philipp ; Mogler, Carolin ; Goidts, Violaine ; Unterberg, Andreas ; Eckstein, Volker ; Herold-Mende, Christel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Comparative Genomic Hybridization</topic><topic>Disease Models, Animal</topic><topic>Gene Dosage - genetics</topic><topic>Gene Expression Profiling</topic><topic>glioblastoma</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>label retention</topic><topic>Mice</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>quiescence</topic><topic>self-renewal</topic><topic>self‐renewal; glioblastoma; label retention; quiescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campos, Benito</creatorcontrib><creatorcontrib>Gal, Zoltan</creatorcontrib><creatorcontrib>Baader, Aline</creatorcontrib><creatorcontrib>Schneider, Tilman</creatorcontrib><creatorcontrib>Sliwinski, Christopher</creatorcontrib><creatorcontrib>Gassel, Kristina</creatorcontrib><creatorcontrib>Bageritz, Josephine</creatorcontrib><creatorcontrib>Grabe, Niels</creatorcontrib><creatorcontrib>von Deimling, Andreas</creatorcontrib><creatorcontrib>Beckhove, Philipp</creatorcontrib><creatorcontrib>Mogler, Carolin</creatorcontrib><creatorcontrib>Goidts, Violaine</creatorcontrib><creatorcontrib>Unterberg, Andreas</creatorcontrib><creatorcontrib>Eckstein, Volker</creatorcontrib><creatorcontrib>Herold-Mende, Christel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campos, Benito</au><au>Gal, Zoltan</au><au>Baader, Aline</au><au>Schneider, Tilman</au><au>Sliwinski, Christopher</au><au>Gassel, Kristina</au><au>Bageritz, Josephine</au><au>Grabe, Niels</au><au>von Deimling, Andreas</au><au>Beckhove, Philipp</au><au>Mogler, Carolin</au><au>Goidts, Violaine</au><au>Unterberg, Andreas</au><au>Eckstein, Volker</au><au>Herold-Mende, Christel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2014-09</date><risdate>2014</risdate><volume>234</volume><issue>1</issue><spage>23</spage><epage>33</epage><pages>23-33</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><abstract>Cancer cells with enhanced self‐renewal capacity influence tumour growth in glioblastoma. So far, a variety of surrogate markers have been proposed to enrich these cells, emphasizing the need to devise new characterization methods. Here, we screen a large panel of glioblastoma cultures (n = 21) cultivated under stem cell‐permissive conditions and identify several cell lines with enhanced self‐renewal capacity. These cell lines are capable of matrix‐independent growth and form fast‐growing, orthotopic tumours in mice. Employing isolation, re‐plating, and label‐retention techniques, we show that self‐renewal potential of individual cells is partitioned asymmetrically between daughter cells in a robust and cell line‐specific fashion. This yields populations of fast‐ and slow‐cycling cells, which differ in the expression of cell cycle‐associated transcripts. Intriguingly, fast‐growing cells keep their slow‐cycling counterparts in a reversible state of quiescence associated with high chemoresistance. Our results suggest that two different subpopulations of tumour cells contribute to aberrant growth and tumour recurrence after therapy in glioblastoma. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>24756862</pmid><doi>10.1002/path.4366</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3417 |
ispartof | The Journal of pathology, 2014-09, Vol.234 (1), p.23-33 |
issn | 0022-3417 1096-9896 |
language | eng |
recordid | cdi_proquest_miscellaneous_1694983643 |
source | Wiley |
subjects | Animals Brain Neoplasms - metabolism Brain Neoplasms - pathology Cell Line, Tumor Cell Proliferation Comparative Genomic Hybridization Disease Models, Animal Gene Dosage - genetics Gene Expression Profiling glioblastoma Glioblastoma - metabolism Glioblastoma - pathology Humans label retention Mice Neoplasm Recurrence, Local - pathology Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Oligonucleotide Array Sequence Analysis quiescence self-renewal self‐renewal glioblastoma label retention quiescence |
title | Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aberrant%20self-renewal%20and%20quiescence%20contribute%20to%C2%A0the%C2%A0aggressiveness%20of%20glioblastoma&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Campos,%20Benito&rft.date=2014-09&rft.volume=234&rft.issue=1&rft.spage=23&rft.epage=33&rft.pages=23-33&rft.issn=0022-3417&rft.eissn=1096-9896&rft_id=info:doi/10.1002/path.4366&rft_dat=%3Cproquest_cross%3E3398322601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552399214&rft_id=info:pmid/24756862&rfr_iscdi=true |