Loading…

Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma

Cancer cells with enhanced self‐renewal capacity influence tumour growth in glioblastoma. So far, a variety of surrogate markers have been proposed to enrich these cells, emphasizing the need to devise new characterization methods. Here, we screen a large panel of glioblastoma cultures (n = 21) cult...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of pathology 2014-09, Vol.234 (1), p.23-33
Main Authors: Campos, Benito, Gal, Zoltan, Baader, Aline, Schneider, Tilman, Sliwinski, Christopher, Gassel, Kristina, Bageritz, Josephine, Grabe, Niels, von Deimling, Andreas, Beckhove, Philipp, Mogler, Carolin, Goidts, Violaine, Unterberg, Andreas, Eckstein, Volker, Herold-Mende, Christel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493
cites cdi_FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493
container_end_page 33
container_issue 1
container_start_page 23
container_title The Journal of pathology
container_volume 234
creator Campos, Benito
Gal, Zoltan
Baader, Aline
Schneider, Tilman
Sliwinski, Christopher
Gassel, Kristina
Bageritz, Josephine
Grabe, Niels
von Deimling, Andreas
Beckhove, Philipp
Mogler, Carolin
Goidts, Violaine
Unterberg, Andreas
Eckstein, Volker
Herold-Mende, Christel
description Cancer cells with enhanced self‐renewal capacity influence tumour growth in glioblastoma. So far, a variety of surrogate markers have been proposed to enrich these cells, emphasizing the need to devise new characterization methods. Here, we screen a large panel of glioblastoma cultures (n = 21) cultivated under stem cell‐permissive conditions and identify several cell lines with enhanced self‐renewal capacity. These cell lines are capable of matrix‐independent growth and form fast‐growing, orthotopic tumours in mice. Employing isolation, re‐plating, and label‐retention techniques, we show that self‐renewal potential of individual cells is partitioned asymmetrically between daughter cells in a robust and cell line‐specific fashion. This yields populations of fast‐ and slow‐cycling cells, which differ in the expression of cell cycle‐associated transcripts. Intriguingly, fast‐growing cells keep their slow‐cycling counterparts in a reversible state of quiescence associated with high chemoresistance. Our results suggest that two different subpopulations of tumour cells contribute to aberrant growth and tumour recurrence after therapy in glioblastoma. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
doi_str_mv 10.1002/path.4366
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694983643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3398322601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493</originalsourceid><addsrcrecordid>eNqF0U9LHDEYBvAgim6tB79AGfCih9H8n81xEavCYi1YhF5CknlnHTs7WZNM1W_jZ_GTNcuuHoTiKZD83ockD0L7BB8TjOnJwqS7Y86k3EAjgpUs1VjJTTTKZ7RknFQ76EuM9xhjpYTYRjuUV0KOJR2h24mFEEyfighdUwbo4dF0henr4mFoITroHRTO9ym0dkhQJP_6ku7g9cXMZgFibP_mkRgL3xSzrvW2MzH5ufmKthrTRdhbr7vo1_ezm9OLcvrj_PJ0Mi0dV1yW1ApOSEWY4NRY5vIuroGZylYNNjUDqWzDgfIaO9ZUWCrR1MZhQpw1hCu2iw5XuYvgHwaISc_bfOmuMz34IWoiFVdjJjn7nArBuVD57zI9-EDv_RD6_JClokwpSnhWRyvlgo8xQKMXoZ2b8KwJ1sti9LIYvSwm22_rxMHOoX6Xb01kcLICj20Hz_9P0teTm4t1ZLmaaGOCp_cJE_5oWbFK6Nurcz2WDLPfVz_1lP0DfRiooQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552399214</pqid></control><display><type>article</type><title>Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma</title><source>Wiley</source><creator>Campos, Benito ; Gal, Zoltan ; Baader, Aline ; Schneider, Tilman ; Sliwinski, Christopher ; Gassel, Kristina ; Bageritz, Josephine ; Grabe, Niels ; von Deimling, Andreas ; Beckhove, Philipp ; Mogler, Carolin ; Goidts, Violaine ; Unterberg, Andreas ; Eckstein, Volker ; Herold-Mende, Christel</creator><creatorcontrib>Campos, Benito ; Gal, Zoltan ; Baader, Aline ; Schneider, Tilman ; Sliwinski, Christopher ; Gassel, Kristina ; Bageritz, Josephine ; Grabe, Niels ; von Deimling, Andreas ; Beckhove, Philipp ; Mogler, Carolin ; Goidts, Violaine ; Unterberg, Andreas ; Eckstein, Volker ; Herold-Mende, Christel</creatorcontrib><description>Cancer cells with enhanced self‐renewal capacity influence tumour growth in glioblastoma. So far, a variety of surrogate markers have been proposed to enrich these cells, emphasizing the need to devise new characterization methods. Here, we screen a large panel of glioblastoma cultures (n = 21) cultivated under stem cell‐permissive conditions and identify several cell lines with enhanced self‐renewal capacity. These cell lines are capable of matrix‐independent growth and form fast‐growing, orthotopic tumours in mice. Employing isolation, re‐plating, and label‐retention techniques, we show that self‐renewal potential of individual cells is partitioned asymmetrically between daughter cells in a robust and cell line‐specific fashion. This yields populations of fast‐ and slow‐cycling cells, which differ in the expression of cell cycle‐associated transcripts. Intriguingly, fast‐growing cells keep their slow‐cycling counterparts in a reversible state of quiescence associated with high chemoresistance. Our results suggest that two different subpopulations of tumour cells contribute to aberrant growth and tumour recurrence after therapy in glioblastoma. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.4366</identifier><identifier>PMID: 24756862</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animals ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Cell Line, Tumor ; Cell Proliferation ; Comparative Genomic Hybridization ; Disease Models, Animal ; Gene Dosage - genetics ; Gene Expression Profiling ; glioblastoma ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Humans ; label retention ; Mice ; Neoplasm Recurrence, Local - pathology ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Oligonucleotide Array Sequence Analysis ; quiescence ; self-renewal ; self‐renewal; glioblastoma; label retention; quiescence</subject><ispartof>The Journal of pathology, 2014-09, Vol.234 (1), p.23-33</ispartof><rights>Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd</rights><rights>Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2014 Pathological Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493</citedby><cites>FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24756862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campos, Benito</creatorcontrib><creatorcontrib>Gal, Zoltan</creatorcontrib><creatorcontrib>Baader, Aline</creatorcontrib><creatorcontrib>Schneider, Tilman</creatorcontrib><creatorcontrib>Sliwinski, Christopher</creatorcontrib><creatorcontrib>Gassel, Kristina</creatorcontrib><creatorcontrib>Bageritz, Josephine</creatorcontrib><creatorcontrib>Grabe, Niels</creatorcontrib><creatorcontrib>von Deimling, Andreas</creatorcontrib><creatorcontrib>Beckhove, Philipp</creatorcontrib><creatorcontrib>Mogler, Carolin</creatorcontrib><creatorcontrib>Goidts, Violaine</creatorcontrib><creatorcontrib>Unterberg, Andreas</creatorcontrib><creatorcontrib>Eckstein, Volker</creatorcontrib><creatorcontrib>Herold-Mende, Christel</creatorcontrib><title>Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>Cancer cells with enhanced self‐renewal capacity influence tumour growth in glioblastoma. So far, a variety of surrogate markers have been proposed to enrich these cells, emphasizing the need to devise new characterization methods. Here, we screen a large panel of glioblastoma cultures (n = 21) cultivated under stem cell‐permissive conditions and identify several cell lines with enhanced self‐renewal capacity. These cell lines are capable of matrix‐independent growth and form fast‐growing, orthotopic tumours in mice. Employing isolation, re‐plating, and label‐retention techniques, we show that self‐renewal potential of individual cells is partitioned asymmetrically between daughter cells in a robust and cell line‐specific fashion. This yields populations of fast‐ and slow‐cycling cells, which differ in the expression of cell cycle‐associated transcripts. Intriguingly, fast‐growing cells keep their slow‐cycling counterparts in a reversible state of quiescence associated with high chemoresistance. Our results suggest that two different subpopulations of tumour cells contribute to aberrant growth and tumour recurrence after therapy in glioblastoma. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><subject>Animals</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Comparative Genomic Hybridization</subject><subject>Disease Models, Animal</subject><subject>Gene Dosage - genetics</subject><subject>Gene Expression Profiling</subject><subject>glioblastoma</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>label retention</subject><subject>Mice</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>quiescence</subject><subject>self-renewal</subject><subject>self‐renewal; glioblastoma; label retention; quiescence</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0U9LHDEYBvAgim6tB79AGfCih9H8n81xEavCYi1YhF5CknlnHTs7WZNM1W_jZ_GTNcuuHoTiKZD83ockD0L7BB8TjOnJwqS7Y86k3EAjgpUs1VjJTTTKZ7RknFQ76EuM9xhjpYTYRjuUV0KOJR2h24mFEEyfighdUwbo4dF0henr4mFoITroHRTO9ym0dkhQJP_6ku7g9cXMZgFibP_mkRgL3xSzrvW2MzH5ufmKthrTRdhbr7vo1_ezm9OLcvrj_PJ0Mi0dV1yW1ApOSEWY4NRY5vIuroGZylYNNjUDqWzDgfIaO9ZUWCrR1MZhQpw1hCu2iw5XuYvgHwaISc_bfOmuMz34IWoiFVdjJjn7nArBuVD57zI9-EDv_RD6_JClokwpSnhWRyvlgo8xQKMXoZ2b8KwJ1sti9LIYvSwm22_rxMHOoX6Xb01kcLICj20Hz_9P0teTm4t1ZLmaaGOCp_cJE_5oWbFK6Nurcz2WDLPfVz_1lP0DfRiooQ</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Campos, Benito</creator><creator>Gal, Zoltan</creator><creator>Baader, Aline</creator><creator>Schneider, Tilman</creator><creator>Sliwinski, Christopher</creator><creator>Gassel, Kristina</creator><creator>Bageritz, Josephine</creator><creator>Grabe, Niels</creator><creator>von Deimling, Andreas</creator><creator>Beckhove, Philipp</creator><creator>Mogler, Carolin</creator><creator>Goidts, Violaine</creator><creator>Unterberg, Andreas</creator><creator>Eckstein, Volker</creator><creator>Herold-Mende, Christel</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201409</creationdate><title>Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma</title><author>Campos, Benito ; Gal, Zoltan ; Baader, Aline ; Schneider, Tilman ; Sliwinski, Christopher ; Gassel, Kristina ; Bageritz, Josephine ; Grabe, Niels ; von Deimling, Andreas ; Beckhove, Philipp ; Mogler, Carolin ; Goidts, Violaine ; Unterberg, Andreas ; Eckstein, Volker ; Herold-Mende, Christel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Comparative Genomic Hybridization</topic><topic>Disease Models, Animal</topic><topic>Gene Dosage - genetics</topic><topic>Gene Expression Profiling</topic><topic>glioblastoma</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>label retention</topic><topic>Mice</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>quiescence</topic><topic>self-renewal</topic><topic>self‐renewal; glioblastoma; label retention; quiescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campos, Benito</creatorcontrib><creatorcontrib>Gal, Zoltan</creatorcontrib><creatorcontrib>Baader, Aline</creatorcontrib><creatorcontrib>Schneider, Tilman</creatorcontrib><creatorcontrib>Sliwinski, Christopher</creatorcontrib><creatorcontrib>Gassel, Kristina</creatorcontrib><creatorcontrib>Bageritz, Josephine</creatorcontrib><creatorcontrib>Grabe, Niels</creatorcontrib><creatorcontrib>von Deimling, Andreas</creatorcontrib><creatorcontrib>Beckhove, Philipp</creatorcontrib><creatorcontrib>Mogler, Carolin</creatorcontrib><creatorcontrib>Goidts, Violaine</creatorcontrib><creatorcontrib>Unterberg, Andreas</creatorcontrib><creatorcontrib>Eckstein, Volker</creatorcontrib><creatorcontrib>Herold-Mende, Christel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campos, Benito</au><au>Gal, Zoltan</au><au>Baader, Aline</au><au>Schneider, Tilman</au><au>Sliwinski, Christopher</au><au>Gassel, Kristina</au><au>Bageritz, Josephine</au><au>Grabe, Niels</au><au>von Deimling, Andreas</au><au>Beckhove, Philipp</au><au>Mogler, Carolin</au><au>Goidts, Violaine</au><au>Unterberg, Andreas</au><au>Eckstein, Volker</au><au>Herold-Mende, Christel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2014-09</date><risdate>2014</risdate><volume>234</volume><issue>1</issue><spage>23</spage><epage>33</epage><pages>23-33</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><abstract>Cancer cells with enhanced self‐renewal capacity influence tumour growth in glioblastoma. So far, a variety of surrogate markers have been proposed to enrich these cells, emphasizing the need to devise new characterization methods. Here, we screen a large panel of glioblastoma cultures (n = 21) cultivated under stem cell‐permissive conditions and identify several cell lines with enhanced self‐renewal capacity. These cell lines are capable of matrix‐independent growth and form fast‐growing, orthotopic tumours in mice. Employing isolation, re‐plating, and label‐retention techniques, we show that self‐renewal potential of individual cells is partitioned asymmetrically between daughter cells in a robust and cell line‐specific fashion. This yields populations of fast‐ and slow‐cycling cells, which differ in the expression of cell cycle‐associated transcripts. Intriguingly, fast‐growing cells keep their slow‐cycling counterparts in a reversible state of quiescence associated with high chemoresistance. Our results suggest that two different subpopulations of tumour cells contribute to aberrant growth and tumour recurrence after therapy in glioblastoma. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>24756862</pmid><doi>10.1002/path.4366</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3417
ispartof The Journal of pathology, 2014-09, Vol.234 (1), p.23-33
issn 0022-3417
1096-9896
language eng
recordid cdi_proquest_miscellaneous_1694983643
source Wiley
subjects Animals
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Cell Line, Tumor
Cell Proliferation
Comparative Genomic Hybridization
Disease Models, Animal
Gene Dosage - genetics
Gene Expression Profiling
glioblastoma
Glioblastoma - metabolism
Glioblastoma - pathology
Humans
label retention
Mice
Neoplasm Recurrence, Local - pathology
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Oligonucleotide Array Sequence Analysis
quiescence
self-renewal
self‐renewal
glioblastoma
label retention
quiescence
title Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aberrant%20self-renewal%20and%20quiescence%20contribute%20to%C2%A0the%C2%A0aggressiveness%20of%20glioblastoma&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Campos,%20Benito&rft.date=2014-09&rft.volume=234&rft.issue=1&rft.spage=23&rft.epage=33&rft.pages=23-33&rft.issn=0022-3417&rft.eissn=1096-9896&rft_id=info:doi/10.1002/path.4366&rft_dat=%3Cproquest_cross%3E3398322601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4946-2b5411713542ab3cc490de3a7b7f0ad3e69bf4e24d0c3f70695fdac011cba1493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552399214&rft_id=info:pmid/24756862&rfr_iscdi=true