Loading…

The miR156/SPL Module, a Regulatory Hub and Versatile Toolbox, Gears up Crops for Enhanced Agronomic Traits

In the past two decades, members of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors, first identified in Antirrhinum majus, have emerged as pivotal regulators of diverse biological processes in plants, including the timing of vegetative and reproductive phase change,...

Full description

Saved in:
Bibliographic Details
Published in:Molecular plant 2015-05, Vol.8 (5), p.677-688
Main Authors: Wang, Hai, Wang, Haiyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the past two decades, members of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors, first identified in Antirrhinum majus, have emerged as pivotal regulators of diverse biological processes in plants, including the timing of vegetative and reproductive phase change, leaf development, tillering/branching, plastochron, panicle/tassel architecture, fruit ripening, fertility, and response to stresses. Transcripts of a subset of SPLs are targeted for cleavage and/or translational repres- sion by microRNA156s (miR156s). The levels of miR156s are regulated by both endogenous developmental cues and various external stimuli. Accumulating evidence shows that the regulatory circuit around the miR156/SPL module is highly conserved among phylogenetically distinct plant species, and plays impor- tant roles in regulating plant fitness, biomass, and yield. With the expanding knowledge and a mechanistic understanding of their roles and regulatory relationship, we can now harness the miR156/SPL module as a plethora of tools to genetically manipulate crops for optimal parameters in growth and development, and ultimately to maximize yield by intelligent design of crops.
ISSN:1674-2052
1752-9867
DOI:10.1016/j.molp.2015.01.008