Loading…

Design, synthesis and biological evaluation of novel FGFR inhibitors bearing an indazole scaffold

Fibroblast growth factor receptor (FGFR) is a potential target for cancer therapy. Based on the structure of AZD4547 and NVPBGJ-398, we designed novel 1H-indazol-3-amine scaffold derivatives by utilizing scaffold hopping and molecular hybridization strategies. Consequently, twenty-eight new compound...

Full description

Saved in:
Bibliographic Details
Published in:Organic & biomolecular chemistry 2015-07, Vol.13 (28), p.7643-7654
Main Authors: Liu, Jian, Peng, Xia, Dai, Yang, Zhang, Wei, Ren, Sumei, Ai, Jing, Geng, Meiyu, Li, Yingxia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fibroblast growth factor receptor (FGFR) is a potential target for cancer therapy. Based on the structure of AZD4547 and NVPBGJ-398, we designed novel 1H-indazol-3-amine scaffold derivatives by utilizing scaffold hopping and molecular hybridization strategies. Consequently, twenty-eight new compounds were synthesized and evaluated for their inhibitory activity against FGFR1. Compound 7n bearing a 6-(3-methoxyphenyl)-1H-indazol-3-amine scaffold was first identified as a potent FGFR1 inhibitor, with good enzymatic inhibition (IC50 = 15.0 nM) and modest cellular inhibition (IC50 = 642.1 nM). The crystal structure of 7n bound to FGFR1 was obtained, which might provide a new basis for potent inhibitor design. Further structural optimization revealed that compound 7r stood out as the most potent FGFR1 inhibitor with the best enzyme inhibitory (IC50 = 2.9 nM) and cellular activity (IC50 = 40.5 nM).
ISSN:1477-0520
1477-0539
DOI:10.1039/c5ob00778j