Loading…

Oracle inequalities for high dimensional vector autoregressions

This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number of parameters is of a much larger order of magnit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of econometrics 2015-06, Vol.186 (2), p.325-344
Main Authors: Kock, Anders Bredahl, Callot, Laurent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-e005cad6c2d720f7c5f02fa80cdee294e92665896deedc9dcc4177b8cc8264053
cites cdi_FETCH-LOGICAL-c551t-e005cad6c2d720f7c5f02fa80cdee294e92665896deedc9dcc4177b8cc8264053
container_end_page 344
container_issue 2
container_start_page 325
container_title Journal of econometrics
container_volume 186
creator Kock, Anders Bredahl
Callot, Laurent
description This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number of parameters is of a much larger order of magnitude than the sample size. We also state conditions under which no relevant variables are excluded. Next, non-asymptotic probabilities are given for the adaptive LASSO to select the correct sparsity pattern. We then provide conditions under which the adaptive LASSO reveals the correct sparsity pattern asymptotically. We establish that the estimates of the non-zero coefficients are asymptotically equivalent to the oracle assisted least squares estimator. This is used to show that the rate of convergence of the estimates of the non-zero coefficients is identical to the one of least squares only including the relevant covariates.
doi_str_mv 10.1016/j.jeconom.2015.02.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1695994242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407615000378</els_id><sourcerecordid>1695994242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-e005cad6c2d720f7c5f02fa80cdee294e92665896deedc9dcc4177b8cc8264053</originalsourceid><addsrcrecordid>eNqFkEtrwzAMgM3YYN3jJwwCu-ySTHZsJzmVUfaCQS_b2XiK0jmk8Wo3hf37ubSnXXaRkfgkWR9jNxwKDlzf90VP6Ee_LgRwVYAogJcnbMbrSuS6btQpm0EJMpdQ6XN2EWMPAErW5YzNl8HiQJkbaTPZwW0dxazzIftyq6-sdWsao_OjHbId4TbV7ZQirQLFfT1esbPODpGuj-8l-3h6fF-85G_L59fFw1uOSvFtTmkf2lajaCsBXYWqA9HZGrAlEo2kRmit6kantMWmRZS8qj5rxFpoCaq8ZHeHud_BbyaKW7N2EWkY7Eh-iobrRjWNFFIk9PYP2vsppBP2VC3L9AGQiVIHCoOPMVBnvoNb2_BjOJi9VtObo1az12pAmKQ19c0PfZSu3TkKJqKjEal1IRkyrXf_TPgFCu2DzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684372004</pqid></control><display><type>article</type><title>Oracle inequalities for high dimensional vector autoregressions</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection 2022-2024</source><source>Elsevier SD Backfile Economics</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Kock, Anders Bredahl ; Callot, Laurent</creator><creatorcontrib>Kock, Anders Bredahl ; Callot, Laurent</creatorcontrib><description>This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number of parameters is of a much larger order of magnitude than the sample size. We also state conditions under which no relevant variables are excluded. Next, non-asymptotic probabilities are given for the adaptive LASSO to select the correct sparsity pattern. We then provide conditions under which the adaptive LASSO reveals the correct sparsity pattern asymptotically. We establish that the estimates of the non-zero coefficients are asymptotically equivalent to the oracle assisted least squares estimator. This is used to show that the rate of convergence of the estimates of the non-zero coefficients is identical to the one of least squares only including the relevant covariates.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2015.02.013</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive LASSO ; Asymptotic methods ; Coefficients ; Convergence ; Econometrics ; Economic theory ; Estimating techniques ; Estimation ; High-dimensional data ; Inequality ; LASSO ; Oracle inequality ; Probability ; Regression analysis ; Sparsity ; Studies ; VAR ; Vector-autoregressive models</subject><ispartof>Journal of econometrics, 2015-06, Vol.186 (2), p.325-344</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-e005cad6c2d720f7c5f02fa80cdee294e92665896deedc9dcc4177b8cc8264053</citedby><cites>FETCH-LOGICAL-c551t-e005cad6c2d720f7c5f02fa80cdee294e92665896deedc9dcc4177b8cc8264053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407615000378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,33224,45992,46003</link.rule.ids></links><search><creatorcontrib>Kock, Anders Bredahl</creatorcontrib><creatorcontrib>Callot, Laurent</creatorcontrib><title>Oracle inequalities for high dimensional vector autoregressions</title><title>Journal of econometrics</title><description>This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number of parameters is of a much larger order of magnitude than the sample size. We also state conditions under which no relevant variables are excluded. Next, non-asymptotic probabilities are given for the adaptive LASSO to select the correct sparsity pattern. We then provide conditions under which the adaptive LASSO reveals the correct sparsity pattern asymptotically. We establish that the estimates of the non-zero coefficients are asymptotically equivalent to the oracle assisted least squares estimator. This is used to show that the rate of convergence of the estimates of the non-zero coefficients is identical to the one of least squares only including the relevant covariates.</description><subject>Adaptive LASSO</subject><subject>Asymptotic methods</subject><subject>Coefficients</subject><subject>Convergence</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>High-dimensional data</subject><subject>Inequality</subject><subject>LASSO</subject><subject>Oracle inequality</subject><subject>Probability</subject><subject>Regression analysis</subject><subject>Sparsity</subject><subject>Studies</subject><subject>VAR</subject><subject>Vector-autoregressive models</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkEtrwzAMgM3YYN3jJwwCu-ySTHZsJzmVUfaCQS_b2XiK0jmk8Wo3hf37ubSnXXaRkfgkWR9jNxwKDlzf90VP6Ee_LgRwVYAogJcnbMbrSuS6btQpm0EJMpdQ6XN2EWMPAErW5YzNl8HiQJkbaTPZwW0dxazzIftyq6-sdWsao_OjHbId4TbV7ZQirQLFfT1esbPODpGuj-8l-3h6fF-85G_L59fFw1uOSvFtTmkf2lajaCsBXYWqA9HZGrAlEo2kRmit6kantMWmRZS8qj5rxFpoCaq8ZHeHud_BbyaKW7N2EWkY7Eh-iobrRjWNFFIk9PYP2vsppBP2VC3L9AGQiVIHCoOPMVBnvoNb2_BjOJi9VtObo1az12pAmKQ19c0PfZSu3TkKJqKjEal1IRkyrXf_TPgFCu2DzQ</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Kock, Anders Bredahl</creator><creator>Callot, Laurent</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20150601</creationdate><title>Oracle inequalities for high dimensional vector autoregressions</title><author>Kock, Anders Bredahl ; Callot, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-e005cad6c2d720f7c5f02fa80cdee294e92665896deedc9dcc4177b8cc8264053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive LASSO</topic><topic>Asymptotic methods</topic><topic>Coefficients</topic><topic>Convergence</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>High-dimensional data</topic><topic>Inequality</topic><topic>LASSO</topic><topic>Oracle inequality</topic><topic>Probability</topic><topic>Regression analysis</topic><topic>Sparsity</topic><topic>Studies</topic><topic>VAR</topic><topic>Vector-autoregressive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kock, Anders Bredahl</creatorcontrib><creatorcontrib>Callot, Laurent</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kock, Anders Bredahl</au><au>Callot, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oracle inequalities for high dimensional vector autoregressions</atitle><jtitle>Journal of econometrics</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>186</volume><issue>2</issue><spage>325</spage><epage>344</epage><pages>325-344</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number of parameters is of a much larger order of magnitude than the sample size. We also state conditions under which no relevant variables are excluded. Next, non-asymptotic probabilities are given for the adaptive LASSO to select the correct sparsity pattern. We then provide conditions under which the adaptive LASSO reveals the correct sparsity pattern asymptotically. We establish that the estimates of the non-zero coefficients are asymptotically equivalent to the oracle assisted least squares estimator. This is used to show that the rate of convergence of the estimates of the non-zero coefficients is identical to the one of least squares only including the relevant covariates.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2015.02.013</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2015-06, Vol.186 (2), p.325-344
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_1695994242
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection 2022-2024; Elsevier SD Backfile Economics; Backfile Package - Mathematics (Legacy) [YMT]
subjects Adaptive LASSO
Asymptotic methods
Coefficients
Convergence
Econometrics
Economic theory
Estimating techniques
Estimation
High-dimensional data
Inequality
LASSO
Oracle inequality
Probability
Regression analysis
Sparsity
Studies
VAR
Vector-autoregressive models
title Oracle inequalities for high dimensional vector autoregressions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oracle%20inequalities%20for%20high%20dimensional%20vector%20autoregressions&rft.jtitle=Journal%20of%20econometrics&rft.au=Kock,%20Anders%20Bredahl&rft.date=2015-06-01&rft.volume=186&rft.issue=2&rft.spage=325&rft.epage=344&rft.pages=325-344&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2015.02.013&rft_dat=%3Cproquest_cross%3E1695994242%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-e005cad6c2d720f7c5f02fa80cdee294e92665896deedc9dcc4177b8cc8264053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1684372004&rft_id=info:pmid/&rfr_iscdi=true