Loading…
Sialic acid and N-acetylglucosamine Regulate type 1 Fimbriae Synthesis
Type 1 fimbriae of E. coli, a chaperon-usher bacterial adhesin, are synthesized by the majority of strains of the bacterium. Although frequently produced by commensal strains, the adhesin is nevertheless a virulence factor in Extraintestinal Pathogenic E. coli (ExPEC). The role of the adhesin in pat...
Saved in:
Published in: | Microbiology spectrum 2015-06, Vol.3 (3) |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Type 1 fimbriae of E. coli, a chaperon-usher bacterial adhesin, are synthesized by the majority of strains of the bacterium. Although frequently produced by commensal strains, the adhesin is nevertheless a virulence factor in Extraintestinal Pathogenic E. coli (ExPEC). The role of the adhesin in pathogenesis is best understood in Uropathogenic E. coli (UPEC). Host attachment and invasion by type 1 fimbriate bacteria activates inflammatory pathways, with TLR4 signaling playing a predominant role. In a mouse model of cystitis, type 1 fimbriation not only enhances UPEC adherence to the surface of superficial umbrella cells of the bladder urothelium, but is both necessary and sufficient for their invasion. Moreover the adhesin plays a role in the formation of transient intracellular bacterial communities (IBCs) within the cytoplasm of urothelial cells as part of UPEC cycles of invasion. The expression of type 1 fimbriation is controlled by phase variation at the transcriptional level, a mode of gene regulation in which bacteria switch reversibly between fimbriate and afimbriate phases. Phase variation has been widely considered to be a mechanism enabling immune evasion. Notwithstanding the apparently random nature of phase variation, switching of type 1 fimbrial expression is nevertheless controlled by a range of environmental signals that include the amino sugars sialic acid and N-acetylglucosamine (GlcNAc). Sialic acid plays a pivotal role in innate immunity, including signaling by the toll-like receptors. Here how sialic acid and GlcNAc control type 1 fimbriation is described and the potential significance of this regulatory response is discussed. |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/microbiolspec.MBP-0015-2014 |