Loading…
Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization
Goal: This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. Methods: An optimization model with L0 norm and Schatten-0 norm is proposed to enforce c...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2015-08, Vol.62 (8), p.2055-2061 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3 |
container_end_page | 2061 |
container_issue | 8 |
container_start_page | 2055 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 62 |
creator | Liu, Yipeng De Vos, Maarten Van Huffel, Sabine |
description | Goal: This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. Methods: An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model. Results: The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity. Conclusion: The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals. Significance: The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system. |
doi_str_mv | 10.1109/TBME.2015.2411672 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1697220543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7058376</ieee_id><sourcerecordid>1697220543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOv98ABEkj750JmmTNL7pmFOYDNx8Lklzq9E2rU2H6Kc3Y9Onew_nnMvlh9A5JWNKibpe3T1Nx4xQPmYZpUKyPTSinOcJ4yndRyNCaJ4oprIjdBzCe5RZnolDdMS4lDzuIwSTtul6CAEsXoIPzr_itsJP63pw5Zv2Hmo8nc7w0r16XYcbvHqDKJroaw_tOuBJGzrdBzd8Y-0tnrdfybP2H3jRDa5xP3pwrT9FB1Vsw9lunqCX--lq8pDMF7PHye08KVORDYkQtjLKlhxsRqVVAjQjoowiN4pIm-ZGK5Bcc6NyUhnGjFJMGAMZ5MRCeoKutne7vv1cQxiKxoUS6nr7a0GFkowRnqUxSrfRsm9D6KEqut41uv8uKCk2dIsN3WJDt9jRjZ3L3fm1acD-N_5wxsDFNuAA4N-WhOepFOkv_JZ_Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697220543</pqid></control><display><type>article</type><title>Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Yipeng ; De Vos, Maarten ; Van Huffel, Sabine</creator><creatorcontrib>Liu, Yipeng ; De Vos, Maarten ; Van Huffel, Sabine</creatorcontrib><description>Goal: This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. Methods: An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model. Results: The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity. Conclusion: The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals. Significance: The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2015.2411672</identifier><identifier>PMID: 25775484</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adolescent ; Adult ; Algorithms ; alternating direction method of multipliers (ADMM) ; Brain modeling ; Child ; Child, Preschool ; compressed sensing ; Computer Simulation ; cosparse signal recovery ; Electroencephalography ; Electroencephalography - methods ; Female ; Humans ; low rank matrix recovery ; Male ; Optimization ; Signal Processing, Computer-Assisted ; Sparse matrices ; Young Adult</subject><ispartof>IEEE transactions on biomedical engineering, 2015-08, Vol.62 (8), p.2055-2061</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3</citedby><cites>FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3</cites><orcidid>0000-0003-2084-8781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7058376$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,54538,54779,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7058376$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25775484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yipeng</creatorcontrib><creatorcontrib>De Vos, Maarten</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><title>Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Goal: This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. Methods: An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model. Results: The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity. Conclusion: The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals. Significance: The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>alternating direction method of multipliers (ADMM)</subject><subject>Brain modeling</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>compressed sensing</subject><subject>Computer Simulation</subject><subject>cosparse signal recovery</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Humans</subject><subject>low rank matrix recovery</subject><subject>Male</subject><subject>Optimization</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sparse matrices</subject><subject>Young Adult</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOv98ABEkj750JmmTNL7pmFOYDNx8Lklzq9E2rU2H6Kc3Y9Onew_nnMvlh9A5JWNKibpe3T1Nx4xQPmYZpUKyPTSinOcJ4yndRyNCaJ4oprIjdBzCe5RZnolDdMS4lDzuIwSTtul6CAEsXoIPzr_itsJP63pw5Zv2Hmo8nc7w0r16XYcbvHqDKJroaw_tOuBJGzrdBzd8Y-0tnrdfybP2H3jRDa5xP3pwrT9FB1Vsw9lunqCX--lq8pDMF7PHye08KVORDYkQtjLKlhxsRqVVAjQjoowiN4pIm-ZGK5Bcc6NyUhnGjFJMGAMZ5MRCeoKutne7vv1cQxiKxoUS6nr7a0GFkowRnqUxSrfRsm9D6KEqut41uv8uKCk2dIsN3WJDt9jRjZ3L3fm1acD-N_5wxsDFNuAA4N-WhOepFOkv_JZ_Xg</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Liu, Yipeng</creator><creator>De Vos, Maarten</creator><creator>Van Huffel, Sabine</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2084-8781</orcidid></search><sort><creationdate>201508</creationdate><title>Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization</title><author>Liu, Yipeng ; De Vos, Maarten ; Van Huffel, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>alternating direction method of multipliers (ADMM)</topic><topic>Brain modeling</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>compressed sensing</topic><topic>Computer Simulation</topic><topic>cosparse signal recovery</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Humans</topic><topic>low rank matrix recovery</topic><topic>Male</topic><topic>Optimization</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sparse matrices</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yipeng</creatorcontrib><creatorcontrib>De Vos, Maarten</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yipeng</au><au>De Vos, Maarten</au><au>Van Huffel, Sabine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2015-08</date><risdate>2015</risdate><volume>62</volume><issue>8</issue><spage>2055</spage><epage>2061</epage><pages>2055-2061</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Goal: This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. Methods: An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model. Results: The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity. Conclusion: The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals. Significance: The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25775484</pmid><doi>10.1109/TBME.2015.2411672</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2084-8781</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2015-08, Vol.62 (8), p.2055-2061 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_proquest_miscellaneous_1697220543 |
source | IEEE Xplore All Conference Series |
subjects | Adolescent Adult Algorithms alternating direction method of multipliers (ADMM) Brain modeling Child Child, Preschool compressed sensing Computer Simulation cosparse signal recovery Electroencephalography Electroencephalography - methods Female Humans low rank matrix recovery Male Optimization Signal Processing, Computer-Assisted Sparse matrices Young Adult |
title | Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed%20Sensing%20of%20Multichannel%20EEG%20Signals:%20The%20Simultaneous%20Cosparsity%20and%20Low-Rank%20Optimization&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Liu,%20Yipeng&rft.date=2015-08&rft.volume=62&rft.issue=8&rft.spage=2055&rft.epage=2061&rft.pages=2055-2061&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2015.2411672&rft_dat=%3Cproquest_CHZPO%3E1697220543%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697220543&rft_id=info:pmid/25775484&rft_ieee_id=7058376&rfr_iscdi=true |