Loading…

Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization

Goal: This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. Methods: An optimization model with L0 norm and Schatten-0 norm is proposed to enforce c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2015-08, Vol.62 (8), p.2055-2061
Main Authors: Liu, Yipeng, De Vos, Maarten, Van Huffel, Sabine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3
cites cdi_FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3
container_end_page 2061
container_issue 8
container_start_page 2055
container_title IEEE transactions on biomedical engineering
container_volume 62
creator Liu, Yipeng
De Vos, Maarten
Van Huffel, Sabine
description Goal: This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. Methods: An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model. Results: The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity. Conclusion: The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals. Significance: The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system.
doi_str_mv 10.1109/TBME.2015.2411672
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1697220543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7058376</ieee_id><sourcerecordid>1697220543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOv98ABEkj750JmmTNL7pmFOYDNx8Lklzq9E2rU2H6Kc3Y9Onew_nnMvlh9A5JWNKibpe3T1Nx4xQPmYZpUKyPTSinOcJ4yndRyNCaJ4oprIjdBzCe5RZnolDdMS4lDzuIwSTtul6CAEsXoIPzr_itsJP63pw5Zv2Hmo8nc7w0r16XYcbvHqDKJroaw_tOuBJGzrdBzd8Y-0tnrdfybP2H3jRDa5xP3pwrT9FB1Vsw9lunqCX--lq8pDMF7PHye08KVORDYkQtjLKlhxsRqVVAjQjoowiN4pIm-ZGK5Bcc6NyUhnGjFJMGAMZ5MRCeoKutne7vv1cQxiKxoUS6nr7a0GFkowRnqUxSrfRsm9D6KEqut41uv8uKCk2dIsN3WJDt9jRjZ3L3fm1acD-N_5wxsDFNuAA4N-WhOepFOkv_JZ_Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697220543</pqid></control><display><type>article</type><title>Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Yipeng ; De Vos, Maarten ; Van Huffel, Sabine</creator><creatorcontrib>Liu, Yipeng ; De Vos, Maarten ; Van Huffel, Sabine</creatorcontrib><description>Goal: This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. Methods: An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model. Results: The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity. Conclusion: The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals. Significance: The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2015.2411672</identifier><identifier>PMID: 25775484</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adolescent ; Adult ; Algorithms ; alternating direction method of multipliers (ADMM) ; Brain modeling ; Child ; Child, Preschool ; compressed sensing ; Computer Simulation ; cosparse signal recovery ; Electroencephalography ; Electroencephalography - methods ; Female ; Humans ; low rank matrix recovery ; Male ; Optimization ; Signal Processing, Computer-Assisted ; Sparse matrices ; Young Adult</subject><ispartof>IEEE transactions on biomedical engineering, 2015-08, Vol.62 (8), p.2055-2061</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3</citedby><cites>FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3</cites><orcidid>0000-0003-2084-8781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7058376$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,54538,54779,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7058376$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25775484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yipeng</creatorcontrib><creatorcontrib>De Vos, Maarten</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><title>Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Goal: This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. Methods: An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model. Results: The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity. Conclusion: The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals. Significance: The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>alternating direction method of multipliers (ADMM)</subject><subject>Brain modeling</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>compressed sensing</subject><subject>Computer Simulation</subject><subject>cosparse signal recovery</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Humans</subject><subject>low rank matrix recovery</subject><subject>Male</subject><subject>Optimization</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sparse matrices</subject><subject>Young Adult</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOv98ABEkj750JmmTNL7pmFOYDNx8Lklzq9E2rU2H6Kc3Y9Onew_nnMvlh9A5JWNKibpe3T1Nx4xQPmYZpUKyPTSinOcJ4yndRyNCaJ4oprIjdBzCe5RZnolDdMS4lDzuIwSTtul6CAEsXoIPzr_itsJP63pw5Zv2Hmo8nc7w0r16XYcbvHqDKJroaw_tOuBJGzrdBzd8Y-0tnrdfybP2H3jRDa5xP3pwrT9FB1Vsw9lunqCX--lq8pDMF7PHye08KVORDYkQtjLKlhxsRqVVAjQjoowiN4pIm-ZGK5Bcc6NyUhnGjFJMGAMZ5MRCeoKutne7vv1cQxiKxoUS6nr7a0GFkowRnqUxSrfRsm9D6KEqut41uv8uKCk2dIsN3WJDt9jRjZ3L3fm1acD-N_5wxsDFNuAA4N-WhOepFOkv_JZ_Xg</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Liu, Yipeng</creator><creator>De Vos, Maarten</creator><creator>Van Huffel, Sabine</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2084-8781</orcidid></search><sort><creationdate>201508</creationdate><title>Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization</title><author>Liu, Yipeng ; De Vos, Maarten ; Van Huffel, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>alternating direction method of multipliers (ADMM)</topic><topic>Brain modeling</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>compressed sensing</topic><topic>Computer Simulation</topic><topic>cosparse signal recovery</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Humans</topic><topic>low rank matrix recovery</topic><topic>Male</topic><topic>Optimization</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sparse matrices</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yipeng</creatorcontrib><creatorcontrib>De Vos, Maarten</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yipeng</au><au>De Vos, Maarten</au><au>Van Huffel, Sabine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2015-08</date><risdate>2015</risdate><volume>62</volume><issue>8</issue><spage>2055</spage><epage>2061</epage><pages>2055-2061</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Goal: This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals. Methods: An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model. Results: The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity. Conclusion: The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals. Significance: The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25775484</pmid><doi>10.1109/TBME.2015.2411672</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2084-8781</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2015-08, Vol.62 (8), p.2055-2061
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_miscellaneous_1697220543
source IEEE Xplore All Conference Series
subjects Adolescent
Adult
Algorithms
alternating direction method of multipliers (ADMM)
Brain modeling
Child
Child, Preschool
compressed sensing
Computer Simulation
cosparse signal recovery
Electroencephalography
Electroencephalography - methods
Female
Humans
low rank matrix recovery
Male
Optimization
Signal Processing, Computer-Assisted
Sparse matrices
Young Adult
title Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed%20Sensing%20of%20Multichannel%20EEG%20Signals:%20The%20Simultaneous%20Cosparsity%20and%20Low-Rank%20Optimization&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Liu,%20Yipeng&rft.date=2015-08&rft.volume=62&rft.issue=8&rft.spage=2055&rft.epage=2061&rft.pages=2055-2061&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2015.2411672&rft_dat=%3Cproquest_CHZPO%3E1697220543%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-66dfb9dc5ed417d96ea206cd418b907d38ba9e75a5b980fb22b9926bbe4e80de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697220543&rft_id=info:pmid/25775484&rft_ieee_id=7058376&rfr_iscdi=true