Loading…

Modeling the distribution of urolithiasis prevalence under projected climate change in Iran

Although studies support a positive correlation between temperature and stone risk, the precise relationship between these factors has not been elucidated. We modeled the current distribution of urolithiasis prevalence in Iran using 26 bioclimatic, climatic and topographic variables based on two mul...

Full description

Saved in:
Bibliographic Details
Published in:Urolithiasis 2015-08, Vol.43 (4), p.339-347
Main Authors: Shajari, Ahmad, Sanjerehei, Mohammad Mousaei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although studies support a positive correlation between temperature and stone risk, the precise relationship between these factors has not been elucidated. We modeled the current distribution of urolithiasis prevalence in Iran using 26 bioclimatic, climatic and topographic variables based on two multivariate linear regression models in geographical information system. The impact of climate change on the stone prevalence was predicted under the projections of GFDL-ESM2G, CCSM4 and HadGEM2-ES climate models by mid-century (2050). Extraterrestrial radiation and isothermality in the first regression model and annual mean temperature, precipitation seasonality and isothermality in the second model were the significant ( P   0.9) and determined a mean urolithiasis prevalence of 6 % (range of 1.5–10.8 %) in Iran. The climate change under the projections of GFDL-ESM2G, CCSM4 and HadGEM2-ES models can, respectively, lead to an average increase of 5.7, 4.3 and 9 % in the urolithiasis prevalence based on the second regression model by 2050. The highest increase of the prevalence will occur in the west, northwest and southwest provinces of the country. Predicting the impact of climate change on climate-related diseases can be useful for effective preventive measures.
ISSN:2194-7228
2194-7236
DOI:10.1007/s00240-015-0784-2