Loading…
Equilibration Rates in a Strongly Coupled Nonconformal Quark-Gluon Plasma
We initiate the study of equilibration rates of strongly coupled quark-gluon plasmas in the absence of conformal symmetry. We primarily consider a supersymmetric mass deformation within N=2^{*} gauge theory and use holography to compute quasinormal modes of a variety of scalar operators, as well as...
Saved in:
Published in: | Physical review letters 2015-06, Vol.114 (25), p.251601-251601, Article 251601 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We initiate the study of equilibration rates of strongly coupled quark-gluon plasmas in the absence of conformal symmetry. We primarily consider a supersymmetric mass deformation within N=2^{*} gauge theory and use holography to compute quasinormal modes of a variety of scalar operators, as well as the energy-momentum tensor. In each case, the lowest quasinormal frequency, which provides an approximate upper bound on the thermalization time, is proportional to temperature, up to a prefactor with only a mild temperature dependence. We find similar behavior in other holographic plasmas, where the model contains an additional scale beyond the temperature. Hence, our study suggests that the thermalization time is generically set by the temperature, irrespective of any other scales, in strongly coupled gauge theories. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.114.251601 |