Loading…

Reactive Oxygen Intermediates Mediate Angiotensin II-induced c-Jun•c-Fos Heterodimer DNA Binding Activity and Proliferative Hypertrophic Responses in Myogenic Cells (∗)

Angiotensin II (Ang-II) receptor engagement activates many immediate early response genes in both vascular smooth muscle cells and cardiomyocytes whether a hyperplastic or hypertrophic response is taking place. Although the signaling pathways stimulated by Ang-II in different cell lines have been wi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1995-09, Vol.270 (38), p.22129-22134
Main Authors: Puri, Pier Lorenzo, Avantaggiati, Maria Laura, Burgio, Vito Lelio, Chirillo, Paolo, Collepardo, Daniela, Natoli, Gioacchino, Balsano, Clara, Levrero, Massimo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Angiotensin II (Ang-II) receptor engagement activates many immediate early response genes in both vascular smooth muscle cells and cardiomyocytes whether a hyperplastic or hypertrophic response is taking place. Although the signaling pathways stimulated by Ang-II in different cell lines have been widely characterized, the correlation between the generation of different second messengers and specific physiological responses remains relatively unexplored. In this study, we report how in both C2C12 quiescent myoblasts and differentiated myotubes Ang-II significantly stimulates AP1-driven transcription and c-Jun•c-Fos heterodimer DNA binding activity. Using a set of different protein kinase inhibitors, we could demonstrate that Ang-II-induced increase in AP1 binding is not mediated by the cAMP-dependent pathway and that both protein kinase C and tyrosine kinases are involved. The observation that in quiescent myoblasts Ang-II increase of AP1 binding and induction of DNA synthesis and, in differentiated myotubes, Ang-II stimulation of protein synthesis are abolished by the cysteine-derivative and glutathione precursor N-acetyl-L-cysteine strongly suggests a role for reactive oxygen intermediates in the intracellular transduction of Ang-II signals for immediate early gene induction, cell proliferation, and hypertrophic responses.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.38.22129